跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張淯翎
Yu-Ling Chang
論文名稱: Properties of Blazars and Radio Galaxies
指導教授: 黃崇源
Chorng-Yuan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 143
中文關鍵詞: 活躍星系核躍變體電波星系宿主星系光度密度寬譜線黑洞質量GALFIT
外文關鍵詞: AGN, blazar, radio galaxy, host galaxy, luminosity density, broad emission line, black hole mass, GALFIT
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學劇變類天體(OVVs)和蝎虎座BL天體(BL Lac objects)是活躍星系核(AGNs)的其
    中一種型態。他們同樣有著非常快速的光變,也因此通常被合稱為躍變體(blazars).
    但是,他們卻有著非常不同的光譜性質。光學劇變類天體的光譜有著寬譜線,但是,
    蠍虎座BL天體卻沒有明顯的譜線。這篇論文的主要目的就是找出光學劇變類天體和蠍
    虎座BL天體有甚麼不一樣的地方。我們從三方面來研究及比較躍變體:發射譜線的光
    度,連續譜的光度密度,以及宿主星系。除此之外,在這篇論文裡,我們也考慮了電
    波星系FRIs以及FRIIs的不同來幫助我們了解躍變體的不同之處。我們討論光學劇變
    類天體和蠍虎座BL天體的不同,以及躍變體和電波星系之間的關係。
    根據我們的結果,我們認為光學躍變類天體和電波型態的蠍虎座BL天體的宿主星系
    和X-ray型態的蠍虎座BL天體的宿主星系不一樣,FRIs和FRIIs也有著不一樣的宿主星
    系。躍變體和電波星系的宿主星系之間沒有一定的關係。因此,我們沒辦法從宿主星
    系的研究來推論出變體與電波星系之間的統一模型理論。也許我們需要一個更複雜的
    模型來解釋活躍星系核的謎題。
    此外,我們發現說,光學劇變類天體的黑洞質量,和可見光的光度密度有著很強的
    正相關(這裡的黑洞質量是用寬譜線得到的)。但是,我們也找到三個有著很大的黑洞
    質量的光學躍變體但我們卻無法解析他們的宿主星系的有效半徑。這個結果也告訴我
    們說,一般認為的黑洞質量和宿主星系的星等的關係在躍變體中也許是不存在的。或
    者是說,我們無法從光學劇變類天體的寬譜線去推出合理的黑洞質量。


    Optical violent variable quasars (OVVs) and BL Lac objects are known as a
    particular type of active galactic nuclei (AGNs) and are collectively referred
    to as "blazars". However, they do have very distinct spectral properties.
    The spectra of OVVs show broad emission lines while the BL Lac objects have
    no significant broad emission lines. In this work, we tried to figure out the
    differences between OVVs and BL Lacs. We investigated and compared the blazars
    in three aspects: the luminosities of emission lines, the continuum luminosity
    densities, and the properties of host galaxies. Besides, we also considered
    the radio galaxies FRIs and FRIIs in this thesis to help us distinguish the
    differences among blazars. We discussed the possible relation between the
    OVVs and BL Lac objects and investigated the relation between blazars and
    radio galaxies.
    Our results show that the OVVs and radio selected BL Lacs have different
    host galaxies with X-ray selected BL Lacs, and the FRIs and FRIIs also have
    different host galaxies. There are no obvious relation between the host
    galaxies of blazars and radio galaxies, thus we cannot connect the radio
    galaxies to the blazers by using a simple unification model from the study
    of the host galaxies of radio galaxies and blazars. We might need a more
    complicated unification model to solve this perplexing problem of AGNs.
    Apart from that, we also found a strong correlation between the optical
    luminosity densities and the black hole masses for OVVs; the black hole masses
    are derived from the broad line widths. However, we have found three OVVs
    having very large black hole masses but unresolved host galaxies. Our results
    indicate either that the black hole mass-bulge relation cannot apply to OVVs
    or that it is not reliable to use broad lines to derive the black hole masses
    for OVVs.

    1 Introduction 1 1.1 AGNs and Unification Model . . . . . . . . . . . . . . . . . . . 1 1.2 BL Lac objects and OVVs . . . . . . . . . . . . . . . . . . . . 4 1.3 Radio Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Emission Lines and Black Hole Masses 9 2.1 Sample Targets and SDSS Spectra . . . . . . . . . . . . . . . . 9 2.2 Gaussian Fitting of Emission Lines . . . . . . . . . . . . . . . 9 2.3 Relation Between the Luminosity Densities and the Emission Lines 11 2.4 Relation Between the Luminosity Densities and the Black Hole Masses of OVVs . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 The Host Galaxies of Blazars and Radio Galaxies 18 3.1 HST images and Target Selection . . . . . . . . . . . . . . . . 18 3.2 GALFIT Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 The K-correction . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 The Calibrations of GALFIT Results – Physical Size Conversion and Band Transformation . . . . . . . . . . . . . . . . . . . . 25 3.5 The Effective Radii of the Host Galaxies . . . . . . . . . . . . 30 3.6 The Magnitudes of the Host Galaxies and the Point Sources . . . 33 3.7 The Morphologies of the Host Galaxies . . . . . . . . . . . . . 37 4 Luminosity Densities in Different Frequencies Versus the Host Galaxies 52 4.1 Comparison Between the Luminosity Densities in Different Wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 Properties of Host Galaxies and Radio Luminosity Densities . . . 56 4.3 Properties of Host Galaxies and Optical Luminosity Densities . . 63 4.4 Properties of Host Galaxies and Gamma-ray Luminosity Densities . 69 5 Discussion and Conclusions 71 5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 79 References 80 A Steps of the K-correction and Band Transformation 86 B Details of HST Images 88 B.1 Further Information About WFPC2 . . . . . . . . . . . . . . . . 88 B.2 Image Reduction: Converting the Format and Rejecting the Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 B.3 Photometric Zero Point of WFPC2 . . . . . . . . . . . . . . . . 90 C Spectra and GALFIT Fitting Results of Targets 91 C.1 OVVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 C.2 Radio Selected BL Lacs . . . . . . . . . . . . . . . . . . . . . 99 C.3 X-ray Selected BL Lacs . . . . . . . . . . . . . . . . . . . . . 105 C.4 FRIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 C.5 FRIIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 D Gaussian Fitting Results 126

    [1] Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. a., and et al.
    the Seventh Data Release of the Sloan Digital Sky Survey. ApJS 182, 2 (June 2009),
    543–558.
    [2] Abdo, a. a., Ackermann, M., Agudo, I., and et al. The Spectral Energy
    Distribution of FERMI Bright Blazars. ApJ 716, 1 (June 2010), 30–70.
    [3] Aldcroft, T. L., Bechtold, J., and Elvis, M. MgII Absorption in a Sample of
    56 Steep-Spectrum Quasars. ApJS 93 (1994), 1–46.
    [4] Antonucci, R. Unified Models for Active Galactic Nuclei and Quasars. ARA&A 31
    (1993), 473–521.
    [5] Antonucci, R. R. J., and Miller, J. S. Spectropolarimetry and the Nature of
    NGC 1068. ApJ 297 (1985), 621–632.
    [6] Baldwin, J. A., Wampler, E. J., and Gaskell, C. M. Emission-Line Properties
    of Optically and Radio-Selected Complete Quasar Samples. AJ 338 (1989), 630–653.
    [7] Barth, A. J., Ho, L. C., and Sargent, W. L. W. The Black Hole Masses and
    Host Galaxies of BL Lacertae Objects. ApJ, 583 (2003), 134–144.
    [8] Brammer, G. B., van Dokkum, P. G., and Coppi, P. Eazy: a Fast, Public
    Photometric Redshift Code. ApJ 686 (2008), 1503–1513.
    [9] Buttiglione, S., Capetti, A., Celotti, A., Axon, D. J., Chiaberge, M.,
    Macchetto, F. D., and Sparks, W. B. An Optical Spectroscopic Survey of the
    3CR Sample of Radio Galaxies With z < 0 . 3 I . Presentation of The Data. A&A
    495 (2009), 1033–1060.
    [10] Cao, X. Evidence for the Evolutionary Sequence of Blazars: Different Types of
    Accretion Flows in BL Lacertae Objects. ApJ 570, 1 (May 2002), L13–L16.
    [11] Capaccioli, M. Photometry of Early-type Galaxies and the R exp 1/4 law. In The
    world of galaxies (1989), pp. 208–228.
    [12] Carroll, B. W., and Ostlie, D. A. An Introduction to Mordern Astrophysics,
    2 ed. Addison-Wesley, 2006.
    [13] Chen, Z., Gu, M., and Cao, X. Flat-spectrum radio quasars from the SDSS DR3
    quasar catalogue. MNRAS 397, 4 (Aug. 2009), 1713–1727.
    [14] Chen, Z.-y., Gu, M.-f., Fan, Z.-h., and Cao, X.-w. SDSS Spectroscopy for
    Blazars in the Fermi LAT Bright AGN. RAA 9, 11 (2009), 1192–1204.
    [15] Cheng-chung Chen. The Relation of Black Hole Masses and Bulge Sizes in Seyfert
    1 and Narrow-Line Seyfert 1 Galaxies. Master’s thesis, National Central University,
    2010.
    [16] Coleman, G. D., Wu, C.-C., and Weedman, D. W. Colors and magnitudes predicted
    for high redshift galaxies. ApJS 43 (1980), 393–416.
    [17] Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A.,
    Taylor, G. B., and Broderick, J. J. The NRAO VLA Sky Survey. AJ 115
    (1998), 1693–1716.
    [18] Cousins, A. W. J. VRI standards in the E regions. MmRAS 81 (1976), 25–36.
    [19] de Vaucouleurs, G. Recherches sur les Nebuleuses Extragalactiques. AnAp 11
    (1948), 247.
    [20] Dokkum, P. G. V. Cosmic-Ray Rejection by Laplacian Edge Detection. PASP 113
    (2001), 1420–1427.
    [21] Edelson, R. A Survey of Ultraviolet Variability in Blazars. ApJ 401 (1992), 516–
    528.
    [22] Edelson, R., Krolik, J., Madejski, G., and et al. Multiwavelength monitoring
    of the BL Lacertae object PKS 2155-304. 4: Multiwavelength analysis. ApJ 438
    (1995), 120–134.
    [23] Falco, E., Kurtz, M., Gellar, M., Huchra, J., Peters, J., Berlind, P.,
    Mink, D., Tokarz, S., and Elwell, B. The Updated Zwicky Catalog. UZC 1
    (2000), 1.
    [24] Fanaroff, B. L., and Riley, J. M. The Morphology of Extragalactic Radio
    Sources of High and Low Luminosity. MNRAS 167 (1974), 31P–35P.
    [25] Giroletti, M., Giovannini, G., Taylor, G. B., and Falomo, R. A Sample
    of Low‐Redshift BL Lacertae Objects. I. The Radio Data. ApJ 613, 2 (Oct. 2004),
    752–769.
    [26] Gonzaga, S., and Biretta, J. HST WFPC2 Data Handbook, 5 ed. Space Telescope
    Science Institute, Baltimore, 2010.
    [27] Hsiao-Chiang Ting. The Radio and Infrared Properties of Radio-loud Narrow Line
    Seyfert I Galaxies. Master’s thesis, National Central University, 2007.
    [28] Hu, S. M., Zhao, G., Guo, H. Y., Zhang, X., and Zheng, Y. G. The Optical
    Spectral Slope Variability of 17 Blazars. MNRAS 371, 3 (Sept. 2006), 1243–1250.
    [29] Inskip, K. J., Tadhunter, C. N., Morganti, R., Holt, J., and Almeida,
    C. R. A Near-IR Study of the Host Galaxies of 2Jy Radio Sources. MNRAS 407, 3
    (2010), 1739–1766.
    [30] Kembhavi, A. K., and Narlikar, J. V. Quasars and Active Galactic Nuclei.
    Cambridge University Press, 1999.
    [31] Kim, M., Ho, L. C., Peng, C. Y., Barth, A. J., Im, M., Martini, P.,
    Nelson, C. H., and Al, K. I. M. E. T. The Origin of the Intrinsic Scatter
    in the Relation Between Black Hole Mass and Bulge Luminosity for Nearby Active
    Galaxies. ApJ 687 (2008), 767–827.
    [32] Kollgaard, R. I., Wardle, J. F. C., Roberts, D. H., and Gabuzda, D. C.
    Radio Constraints on the Nature of BL Lacertae objects and Their Parent Population.
    AJ 104 (1992), 1687–1705.
    [33] Kotilainen, J. K., Falomo, R., and Scarpa, R. Near-Infrared Imaging of the
    Host Galaxies of Flat Spectrum Radio Quasars. A&A 332 (1998), 503–513.
    [34] Krist, J. E., Hook, R. N., and Stoehr, F. 20 Years of Hubble Space Telescope
    Optical Modeling Using Tiny Tim. In SPIE (Sept. 2011), M. A. Kahan, Ed., vol. 8127,
    pp. 81270J–81270J–16.
    [35] Laing, R. A. Decelerating Relativistic Jets in FRI Radio sources. In First Stromlo
    Symp. Phys. Act. Galaxies. ASP Conf. Ser. (1994), G. Bicknell, M. Dopita, and
    P. Quinn, Eds., p. 227L.
    [36] Landt, H., and Bignall, H. E. On the relationship between BL Lacertae objects
    and radio galaxies. MNRAS 391, 2 (Dec. 2008), 967–985.
    [37] Landt, H., Padovani, P., Perlman, E. S., and Giommi, P. A Physical Classification
    Scheme for Blazars. MNRAS 351, 1 (June 2004), 83–100.
    [38] Marziani, P., Sulentic, J. W., Dultzin-Hacyan, D., Calvani, M., and Moles,
    M. Comparative Analysis of the High- and Low-Ionization Lines in the Broad-Line
    Region of Active Galactic Nuclei. ApJS 104 (1996), 37–70.
    [39] Mould, J., Reynolds, T., Readhead, T., Floyd, D., Jannuzi, B., Cotter, G.,
    Ferrarese, L., Matthews, K., Atlee, D., and Brown, M. Infrared Spectroscopy
    of Nearby Radio Active Elliptical Galaxies. ApJS 203, 1 (Nov. 2012), 14.
    [40] Narlikar, J. An Introduction to Cosmology, 3 ed. Cambridge University Press,
    2002.
    [41] Nolan, P. L., Abdo, a. a., Ackermann, M., and et al. Fermi Large Area
    Telescope Second Source Catalog. ApJS 199, 2 (Apr. 2012), 31.
    [42] Owen, F. N., and Laing, R. A. CCD Surface Photometry of Radio Galaxies-I. FR
    Class I and II Sources. MNRAS 238 (1989), 357–378.
    [43] Padovani, P., and Urry, C. M. Luminosity Functions, Relavivistic Beaming, and
    Unified Theories of High-Luminosity Radio Sources. ApJ 387 (1992), 449–457.
    [44] Peng, C. Y., Ho, L. C., Impey, C. D., and Rix, H.-W. Detailed Structural
    decomposition of Galaxy Images. AJ 124 (2002), 266–293.
    [45] Perlman, E. S., Stocke, J. T., Schachter, J. F., Elvis, M., Ellingson,
    E., Urry, C. M., Potter, M., Impey, C. D., and Kolchinsky, P. The Einstein
    Slew Survey Sample of BL Lacertae Objects. ApJS 104 (1996), 251–285.
    [46] Peterson, B. M. An Introduction to Active Galactic Nuclei. Cambridge University
    Press, 1997.
    [47] Raiteri, C. M., Villata, M., Capetti, a., Heidt, J., Arnaboldi, M., and
    Magazzù, a. Spectroscopic monitoring of the BL Lac object AO 0235+164. A&A
    464, 3 (Mar. 2007), 871–878.
    [48] Rector, T. A., Stocke, J. T., Perlman, E. S., Morris, S. L., and Gioia,
    I. M. The Properties of the X-Ray-selected EMSS Sample of BL Lacertae Objects.
    AJ 120 (2000), 1626–1647.
    [49] Sbarufatti, B., Falomo, R., Treves, A., and Kotilainen, J. Optical Spectroscopy
    of BL Lacertae Objects Broad Lines , Companion Galaxies , and Redshift
    Lower Limits. A&A 43 (2006), 35–43.
    [50] Scarpa, R., Urry, C. M., Falomo, R., Pesce, J. E., and Treves, A. The
    Hubble Space Telescope Survey of BL Lacertae Objects. i. Surface Brightness Profiles,
    Magnitudes, and Radii of Host Galaxies. ApJ 532 (2000), 740–815.
    [51] Schachter, J. F., Stocke, J. T., Perlman, E., Elvis, M., Remillard, R.,
    Granados, A., Luu, J., Huchra, J. P., Humphreys, R., Urry, C. M., and
    Wallin, J. Ten new BL Lacertae Objects Discovered by an Efficient X-ray/Radio/
    Optical Technique. AJ 412 (1993), 541–549.
    [52] Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the
    brightness distribution in a galaxy. BAAA 6 (1963), 41.
    [53] Stickel, M., Fried, J. W., and Kuehr, H. The Complete Sample of 1 Jy BL Lac
    Objects. II - Observational Data. Astron. Astrophys. Suppl. Ser. 98 (1993), 393–442.
    [54] Stickel, M., and Kuhr, H. Optical Spectroscopy of 1-JANSKY S4 and S5 Radio
    Sources - Part Four. Astron. Astrophys. Suppl. Ser. 101 (1993), 521–540.
    [55] Stocke, J. T., Morris, S. L., Gioia, I., Maccacaro, T., Schild, R. E.,
    and Wolter, A. No Evidence for Radio-Quiet BL Lacertae Objects. ApJ 348 (1990),
    141–146.
    [56] Stone, R. P. S. Spectrophotometry of Flux Calibration Stars for Hubble Space
    Telescope. ApJS 107 (1996), 423–442.
    [57] Urry, C. M., Falomo, R., Scarpa, R., Pesce, J. E., Treves, A., and
    Giavalisco, M. Hubble Space Telescope Observations of the Host Galaxies of BL
    Lacertae Objects. AJ 10 (1999), 88–99.
    [58] Urry, C. M., and Padovani, P. Unified Schemes for Radio-Loud Active Galactic
    Nuclei. PASP 107 (1995), 803–845.
    [59] Vermeulen, R. C., Ogle, P. M., Tran, H. D., Browne, I. W. A., Cohen,
    M. H., Readhead, A. G. S., and Taylor, G. B. When is BL Lac not a BL Lac.
    ApJL 452 (1995), L.5–L.8.
    [60] Xie, G. Z., Zhang, Y. H., Fan, J. H., and Liu, F. K. The relation between BL
    Lacertae objects and OVV quasars, and the unified model of BL Lacertae objects,
    FR-I and FR-II (G) radio galaxies. A&A, 278 (1993), 6–10.

    QR CODE
    :::