| 研究生: |
王荷佑 Ho-Yu Wang |
|---|---|
| 論文名稱: |
基於多頻帶之正規化共同空間型樣法用於虛擬實境之想像運動腦波分類 Multiple Frequency Band based Normalized CSP for Motor Imagery EEG Signals Classification in Virtual Reality |
| 指導教授: | 徐國鎧 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 腦電圖 、腦機介面 、想像運動 、虛擬實境 、共同空間形樣法 、正規化 、濾波器組 、線性區別分析法 |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計與實現了在虛擬實境(Virtual reality, VR)中錄製腦波以及控制虛擬角色之左右手想像運動腦機介面系統,用以解決現有VR裝置在操作空間上的限制,也幫助傷殘人士能夠僅以腦波使用VR。硬體方面,本論文結合無線腦波機與VIVE PRO虛擬實境頭戴式顯示器,改善腦波裝置穿戴速度與舒適度。演算法方面,本論文提出創新式正規化方法,能夠有效降低腦波特性隨時間浮動現象對於傳統CSP分類效果所造成的影響,本論文亦提出改良的Filter-Bank多頻帶濾波方法,使CSP能充分擷取較寬頻的腦波變化,結合兩方法,本論文之系統能夠在BCI Competition IV dataset 2a的9位受試者之腦波資料上達到平均73.7%之分類準確度,並在自行錄製的9位受試者的腦波資料達到平均69.9%之準確度,能比傳統CSP方法平均高出5.9%,大幅改善腦機介面之可用性。
This thesis designed and implemented a virtual reality brain computer intarface system about EEG recording and motor imagery based VR character controlling. It is used to solve the limitation in operation space of the existing VR device, and also to help the disabled to use VR with their brain.
In terms of hardware, to improve the convenience and comfort of wearing a EEG device, this thesis combined wireless EEG recorder and VIVE PRO virtual reality head-mounted display. In terms of algorithms, this thesis proposes an innovative normalization method, which can effectively reduce the impact of EEG’s over time behavior changes on the traditional CSP classification accuracy. This thesis also proposed an improved Filter-Bank filtering method, in this way the CSP method can contain the EEG changes with wider bandwidth, combined with this two methods, the CSP achieved 73.7% classification accuracy in the BCI Competition IV dataset 2a with 9 subjects, and an average of 69.9% accuracy is achieved in the data of the 9 subjects recorded by the proposed BCI system. It is 5.9% higher than the traditional CSP method, which greatly improves the usability of the brain computer interface.
[1] Siavash Sakhavi; Cuntai Guan; Shuicheng Yan,”Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks”, IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5619-5629, Nov. 2018.
[2] Jaime Camacho; Vidya Manian, “Real-time single channel EEG motor imagery based Brain Computer Interface”, World Automation Congress, Aug. 2016
[3] Tianyou Yu; Jun Xiao; Fangyi Wang; Rui Zhang; Zhenghui Gu; Andrzej Cichocki; Yuanqing Li, “Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback”, IEEE Trans. Biomedical Engineering, vol. 62, no. 7, pp. 1706-1717, Jul. 2015.
[4] Jacobo Fernández-Vargas; Tapio V. J. Tarvainen; Kahori Kita; Wenwei Yu, “Effects of Using Virtual Reality and Virtual Avatar on Hand Motion Reconstruction Accuracy and Brain Activity”, IEEE Access, Vol. 5, pp. 23736-23750, Oct. 2017.
[5] Aimin Jiang; Qing Wang; Jing Shang; Xiaofeng Liu, “Sparse Common Spatial Pattern for EEG Channel Reduction in Brain-Computer Interfaces”, IEEE 23rd Int. Conf. Digital Signal Processing, Feb. 2018.
[6] Haiping Lu; How-Lung Eng; Cuntai Guan; Konstantinos N. Plataniotis; Anastasios N. Venetsanopoulos, “Regularized Common Spatial Pattern With Aggregation for EEG Classification in Small-Sample Setting”, IEEE Trans. Biomedical Engineering, vol. 57, no. 12, pp. 2936-2946, Dec. 2010
[7] Haiping Lu; Konstantinos N. Plataniotis; Anastasios N. Venetsanopoulos, “Regularized common spatial patterns with generic learning for EEG signal classification”, Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, Nov. 2009.
[8] Ping Wang; Aimin Jiang; Xiaofeng Liu; Jing Shang; Li Zhang, “LSTM-Based EEG Classification in Motor Imagery Tasks”, IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 26, no. 11, pp. 2086-2095, Nov. 2018
[9] H. Ramoser; J. Muller-Gerking; G. Pfurtscheller, “Optimal Spatial Filtering of Single Trial EEG During Imagined Hand Movement”, IEEE Trans. Rehabilitation Engineering, vol. 8, no. 4, pp. 441-446, Dec. 2000.
[10] Sang-Hoon Park; Sang-Goog Lee, “Small Sample Setting and Frequency Band Selection Problem Solving Using Subband Regularized Common Spatial Pattern”, IEEE Sensors Journal, vol. 17, np. 10, pp. 2977-2983, May. 2017.
[11] S. Bermudez i Badia; A. Garcia Morgade; H. Samaha; P. F. M. J. Verschure, “Using a Hybrid Brain Computer Interface and Virtual Reality System to Monitor and Promote Cortical Reorganization through Motor Activity and Motor Imagery Training”, IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 21, no. 2, pp. 174-181, Mar. 2013.
[12] Amirhossein S. Aghaei; Mohammad Shahin Mahanta; Konstantinos N. Plataniotis, “Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems”, IEEE Trans. Biomedical Engineering, vol. 63, no. 1, pp. 15-29, Jan. 2016.
[13] Shuang Qiu; Weibo Yi; Jiapeng Xu; Hongzhi Qi; Jingang Du; Chunfang Wang; Feng He; Dong Ming, “Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb”, IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 24, np. 2, pp. 283-290, Feb. 2016.