| 研究生: |
鍾瑱諭 Chen-Yu Chung |
|---|---|
| 論文名稱: |
快速塑性成型(QPF)製程品質之精密度探討 Quality and Precision Investigation of QPF Process |
| 指導教授: |
李雄
黃俊仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 快速塑性成型 、準確度 、精密度 、製程能力指數 、國際公差等級 |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是針對快速塑性成型(Quick Plastic Forming, QPF)之製程精度進行探討。我們透過將製程的“可控變因”固定後,再取足量方形試片,搭配設計過的量測夾具進行測量,重複量測後再將數據計算整理並相互比較得出結論,希望能夠藉此定義出QPF製程之尺寸精度,使QPF製程在更多領域或面向上的使用率能有所提升。
研究結果顯示QPF製程之尺寸精度受設計尺寸大小所影響,國際公差等級大約是落在IT7~10間,這樣的等級並不比現行的許多主流製程差,故希望之後也能再提出針對更多不同設計尺寸量測計算後得出之IT值,使QPF製程之尺寸精度被更為完整的定義。
This paper focuses on the process accuracy of Quick Plastic Forming (QPF). We fix the controllable variables of the manufacturing process and then take a sufficient number of rectangular box test pieces to measure with the designed fixture. After repeated measurements, the data is calculated and compared with each other to draw a conclusion. It is hoped that the dimensional accuracy of the QPF process can be defined so that the utilization rate of the QPF process in more fields can be improved.
The results show that the dimensional accuracy of QPF process is affected by the design size. The international tolerance grade falls between IT7~10. This grade is even better than many current mainstream processes. Therefore, we hope that the IT grade obtained for more different design sizes can be proposed later, so that the dimensional accuracy of QPF process can be more completely defined.
[1] D. C. Montgomery, Introduction to Statistical Quality Control, sixth., John Wiley, USA, 2008.
[2] F. Yang, W. Yang, “Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions,” Scripta Materialia, Vol. 61, pp. 919-922, 2009.
[3] C. M. Hu, C. M. Lai, P. W. Kao, N. J. Ho, J. C. Huang, “Quantitative measurements of small scaled grain sliding in ultra-fine grained Al-Zn alloys produced by friction stir processing,” Materials Characterization, Vol. 61, pp. 1043-1053, 2010.
[4] A. K. Mukherjee, R. S. Mishra, “Superplasticity,” Encyclopedia of Materials: Science and Technology, Second Ed., pp. 8977-8981, 2001.
[5] 鄭春生,品質管理現代觀念與實務應用,五版,全華圖書,2018年。
[6] 丁村成,從標準差除以n或除以n-1談起,數學傳播,29卷,1期,pp. 9-17,民94年。
[7] Geometrical Product Specifications (GPS) — ISO code system for tolerances on linear sizes Part 1: Basis of tolerances, deviations and fits (ISO 286-1:2010)
[8] D. Dimitrov, W. van Wijck, K. Schreve, N. de Beer, "Investigating the achievable accuracy of three dimensional printing," Rapid Prototyping Journal, Vol. 12, pp. 42-52, 2006.
[9] S. Kalpakjian, “Manufacturing Engineering and Technology,” seventh, Pearson, USA, p.1023, 2013.
[10] T. Lieneke, V. Denzera, G. A. O. Adama, D. Zimmera, “Dimensional tolerances for additive manufacturing: experimental investigation for fused deposition modeling,” CIRP Conference on Computer Aided Tolerancing, vol. 43, pp. 286–291, 2016.
[11] T. Lieneke, G. A. O. Adam, S. Leuders, F. Knoop, S. Josupeit, P. Delfs, N. Funke, and D. Zimmer, “Systematical determination of tolerances for additive manufacturing by measuring linear dimensions,” 26th International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, pp.371–384, Austin, Texas, U.S.A., 2015.
[12] K. Kitsakis, Z. Moza, V. Iakovakis, N. Mastorakis, and J. Kechagias, “An investigation of dimensional accuracy of Multi-Jet Modeling parts,” Proceedings of the International Conference Applied Mathematics, Computational Science & Engineering, pp. 17-19, Agios Nikolaos, Crete, Greece, 2015.
[13] K. Kitsakis, J. Kechagias1, N. Vaxevanidis, D. Giagkopoulos, “Tolerance analysis of 3d-MJM parts according to IT grade,” Innovative Manufacturing Engineering & Energy International, IManEE, 2016.
[14] M.N. Islam, B. Boswell, A. Pramanik, “Dimensional accuracy achievable by three-dimensional printing,” IAENG Transactions on Engineering Sciences, pp. 263-268, 2014.
[15] Mohammad Nazrul Islam, Noor Hakim Rafai, Sarmilan Santhosam SubramanianElectrical, Engineering and Applied Computing, “Dimensional accuracy achievable in wire-cut electrical discharge machining,” Springer Netherlands, pp. 543-553, 2011.
[16] M. N. Islam, N. H. Rafai, S. S. Subramanian, “An investigation into dimensional accuracy achievable in wire-cut electrical discharge machining,” Proceedings of the World Congress on Engineering Vol. III, 2010.
[17] 廖元基,“快速塑性成型(QPF)尺寸公差與脫模拉桿機構設計之研究”,國立中央大學,碩士論文, pp. 62-66,108年6月。
[18] 謝建華,“快速塑性成型(QPF)製程的精準度探討”,國立中央大學,碩士論文,pp. 35-38,108年1月。