| 研究生: |
曾信翔 Hsin-Hsiang Tseng |
|---|---|
| 論文名稱: |
毫米波多用戶大規模多輸入多輸出正交分頻多工系統之具動態資料流分配的混合波束成型設計 Hybrid Beamforming Design with Dynamic Streams Assignment for mmWave Multi-User Massive MIMO-OFDM Systems |
| 指導教授: |
陳永芳
Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 動態資料流分配 、混合波束成型 、多用戶大規模多輸入多輸出 、正交分頻多工 、頻譜效率最大化 |
| 外文關鍵詞: | Dynamic Streams Assignment, Hybrid Beamforming, Multi-user Massive Multiple-Input-Multiple-Output, Orthogonal Frequency-Division Multiplexing, Spectral Efficiency Maximization |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
毫米波(mmWave)大規模多輸入多輸出(MIMO)通信是未來蜂巢式網絡中一種有前途的技術。然而,傳統的全數位波束成型每根天線都需要專用的射頻 (RF) 鏈,這將導致龐大的硬體成本和功率消耗。混合波束成型結構在大規模 MIMO 中扮演了重要的角色,因為它可以支持高陣列和復用增益,同時有效降低高昂的硬體成本。本論文在寬頻通道中的上行毫米波多用戶 (MU) 大規模 MIMO 系統提出了三種具動態資料流分配 (DSA) 的新穎混合波束成型設計,旨在最大化整體頻譜效率。正交分頻多工被採用來對抗通道的頻率選擇性。我們提出的演算法由一個兩段式的方法所組成,其中類比和數位波束成型器是分開設計的。考量到性能和複雜度,開發了三種不同的類比波束成型設計,以盡可能地最大化每個子載波上等效基頻通道的通道增益,同時也為每個移動站 (MS) 決定資料流的數量。具體來說,對於第一種設計,類比波束成型器被設計成匹配每個 MS 在整個頻帶上相對應的通道。對於第二種而言,為了顯著降低第一種設計的複雜度,我們可以透過選擇適當的陣列響應向量集合來完全避免矩陣分解。最後一種設計僅對中心子載波的通道執行奇異值分解 (SVD),以求得類比波束成型器。結合塊對角化 (BD) 和協調發射-接收處理之方法,進一步推導出數位預編碼器和組合器以消除每個子載波上的干擾。
我們也基於現有的演算法開發全數位波束成型和另外兩種混合波束成型設計作為性能基準。透過數據模擬,在為每個 MS 動態分配資料流的數量後,所提出之方案的頻譜效率會顯著提升。接下來,我們研究了在各種參數底下所提出之方案和其他基準方案之間的性能差異。此外,模擬指出所提出的第一和第三種的混合波束成型設計可以達到非常具競爭力的性能,甚至在某些情況下優於全數位的設計。
Millimeter wave (mmWave) massive multiple-input-multiple-output (MIMO) communication is a promising technology for the future cellular networks. However, the traditional fully-digital beamforming requires a dedicated radio frequency (RF) chain for each antenna which will lead to huge hardware cost and power consumption. A hybrid beamforming structure plays an important role for massive MIMO because it can support the high array and multiplexing gain while effectively alleviating the high hardware cost. This thesis proposes three novel hybrid beamforming designs with dynamic streams assignment (DSA) in the uplink mmWave multi-user (MU) massive MIMO systems over wideband channels, aiming at maximizing the overall spectral efficiency. The orthogonal frequency-division multiplexing (OFDM) is adopted to combat the frequency selectivity of the channel. Our proposed algorithms consist of a two-stage approach, in which the analog and digital beamformers are designed separately. Considering the performance and complexity, three different analog beamforming designs are developed to maximize the channel gains of the equivalent baseband channel at each subcarrier as much as possible, while the number of data streams are also determined for each mobile station (MS). Specifically, for the first design, the analog beamformers are designed to match the corresponding channel on the entire band for each MS. For the second one, to significantly reduce the complexity of the first design, we can completely avoid the matrix decomposition by selecting the appropriate set of array response vectors. The last design only performs singular value decomposition (SVD) on the channel of the center subcarrier to find the analog beamformers. Combining the block diagonalization (BD) and coordinated transmit-receive processing method, the digital precoders and combiner are further derived to eliminate the interference at each subcarrier.
We also develop fully-digital beamforming and another two hybrid beamforming designs based on the existing algorithms as performance benchmarks. Through numerical simulations, the spectral efficiency of the proposed schemes can be significantly improved after dynamically assigning the number of data streams for each MS. Then, we study the performance difference between the proposed and other benchmark schemes under the various parameters. Moreover, simulations indicate the first and third proposed hybrid beamforming designs can achieve a very competitive performance and even outperform the fully-digital design in some situations.
[1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101-107, Jun. 2011.
[2] S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, “Millimeter-Wave massive MIMO communication for future wireless systems: A survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 836–869, 2nd Quart., 2018.
[3] S. K. Yong and C. C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw., vol. 2007, no. 1, pp. 1–10, Jan. 2007.
[4] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, “State of the art in 60-GHz integrated circuits and systems for wireless communications,” Proc. IEEE, vol. 99, no. 8, pp. 1390–1436, Aug. 2011.
[5] R. Daniels and R. W. Heath, Jr., “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, Sep. 2007.
[6] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179, Jun. 2014.
[7] Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz, H. Zhao, F. Gutierrez, D. Hwang, and T. S. Rappaport, ‘‘28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City,’’ in Proc. IEEE Int. Conf. Commun., Jun. 2013, pp. 1–6.
[8] T.S. Rappaport, et al., “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access Journal, vol. 1, no. 1, pp. 335-349, May. 2013.
[9] G. R. MacCartney, Jr., J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in IEEE Global Commun. Conf. (GLOBECOM), Dec. 2013, pp. 3948–3953.
[10] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: Benefits and challenges,” IEEE J. Sel. Areas Commun., vol. 8, no. 5, pp. 742–758, Oct. 2014.
[11] R. W. Heath, Jr., N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
[12] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, ‘‘A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3060–3097, 4th Quart., 2018.
[13] A. Alkhateeb, M. Jianhua, N. González-Prelcic, and R. W. Heath Jr., “MIMO precoding and combining solutions for millimeter-wave systems,” IEEE Commun. Mag., vol. 52, no. 12, pp. 122–131, Dec. 2014.
[14] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Commun. Mag., vol. 52, no. 12, pp. 110–121, Dec. 2014.
[15] F. Rusek, D. Persson, B. Lau, E. Larsson, T. Marzetta, O. Edfors, and F. Tufvesson, ‘‘Scaling up MIMO: Opportunities and challenges with very large arrays,’’ IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.
[16] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr., ‘‘Spatially sparse precoding in millimeter wave MIMO systems,’’ IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
[17] S. Kutty and D. Sen, “Beamforming for millimeter wave communications: An inclusive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 949–973, 2nd Quart., 2016.
[18] T. Gong, N. Shlezinger, S. S. Ioushua, M. Namer, Z. Yang, and Y. C. Eldar, “RF chain reduction for MIMO systems: A hardware prototype,” IEEE Syst. J., vol. 14, no. 4, pp. 5296–5307, Dec. 2020.
[19] J. Wang et al., “Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1390–1399, Oct. 2009.
[20] L. Zhou and Y. Ohashi, “Efficient codebook-based MIMO beamforming for millimeter-wave WLANs,” in Proc. IEEE Int. Symp. Pers. Ind. Mobile Radio Commun. (PIMRC), Sep. 2012, pp. 1885–1889.
[21] O. El Ayach, R. W. Heath, Jr., S. Abu-Surra, S. Rajagopal, and Z. Pi, “Low complexity precoding for large millimeter wave MIMO systems,” in Proc. 2012 IEEE International Conf. Commun., pp. 3724–3729.
[22] S. Han, I. Chih-Lin, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G,” IEEE Commun. Mag., vol. 53, no. 1, pp. 186-194, Jan. 2015.
[23] O. El Ayach, R. W. Heath, Jr., S. Rajagopal, and Z. Pi, “Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub-arrays,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2013, pp. 3476–3480.
[24] R. Méndez-Rial, C. Rusu, A. Alkhateeb, N. González-Prelcic, and R. W. Heath, “Channel estimation and hybrid combining for mmWave: Phase shifters or switches?” in Proc. Inf. Theory Appl. Workshops, Feb. 2015, pp. 90-97.
[25] S. Park, A. Alkhateeb, and R. W. Heath, “Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2907–2920, May 2017.
[26] X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091–4103, Nov. 2005.
[27] W.-L. Hung, C.-H. Chen, C.-C. Liao, C.-R. Tsai, A.-Y. Wu, “Low-Complexity Hybrid Precoding Algorithm based on Orthogonal Beamforming Codebook,” in Proc. IEEE Workshop Signal Process. Syst. (SiPS), pp. 1–5, Oct. 2015.
[28] D. Zhang, P. Pan, R. You, and H. Wang, “SVD-based low-complexity hybrid precoding for millimeter-wave MIMO systems,” IEEE Commun. Lett., vol. 22, no. 10, pp. 2176–2179, Oct. 2018.
[29] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500, Apr. 2016.
[30] Y. Wang and W. Zou, “Low complexity hybrid precoder design for millimeter wave MIMO systems,” IEEE Commun. Lett., vol. 23, no. 7, pp. 1259–1262, Jul. 2019.
[31] M. Alouzi, F. Chan, and C. D'Amours, “Low Complexity Hybrid Precoding and Combining for Millimeter Wave Systems,” IEEE Access, pp. 95911-95924, Vol. 9., Jul. 2021.
[32] F. Sohrabi and W. Yu, ‘‘Hybrid digital and analog beamforming design for large-scale antenna arrays,’’ IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501–513, Apr. 2016.
[33] R. Zhang, W. Zou, Y. Wang, and M. Cui, ‘‘Hybrid precoder and combiner design for single-user mmWave MIMO systems,’’ IEEE Access, vol. 7, pp. 63818–63828, 2019.
[34] J. Li, L. Xiao, X. Xu, and S. Zhou, ‘‘Robust and low complexity hybrid beamforming for uplink multiuser mmWave MIMO systems,’’ IEEE Commun. Lett., vol. 20, no. 6, pp. 1140–1143, Jun. 2016.
[35] Y. Zhu and T. Yang, ‘‘Low complexity hybrid beamforming for uplink multiuser mmWave MIMO systems,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2017, pp. 1–6.
[36] G. Zhu, K. Huang, V. K. N. Lau, B. Xia, X. Li, and S. Zhang, “Hybrid beamforming via the Kronecker decomposition for the millimeter-wave massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 2097–2114, Sep. 2017.
[37] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.
[38] Z. Wang, M. Li, X. Tian, and Q. Liu, “Iterative hybrid precoder and combiner design for mmWave multiuser MIMO systems,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1581–1584, Jul. 2017.
[39] Z. Wang, M. Li, Q. Liu, and A. L. Swindlehurst, “Hybrid precoder and combiner design with low-resolution phase shifters in mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 256–269, May 2018.
[40] W. Ni and X. Dong, “Hybrid Block Diagonalization for Massive Multiuser MIMO Systems,” IEEE Trans. Commun., vol. 64, no. 1, pp. 201-211, Jan. 2016.
[41] Q. H. Spencer, A. L. Swindlehurst and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461-471, Feb. 2004.
[42] X. Wu, D. Liu, and F. Yin, “Hybrid beamforming for multi-user massive MIMO systems,” IEEE Trans. Commun., vol. 66, no. 9, pp. 3879–3891, Sep. 2018.
[43] F. Khalid, “Hybrid beamforming for millimeter wave massive multiuser MIMO systems using regularized channel diagonalization,” IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 705–708, Jun. 2019.
[44] J. Zhan and X. Dong, “Interference Cancellation Aided Hybrid Beamforming for mmWave Multi-User Massive MIMO Systems,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2322–2336, Mar. 2021.
[45] H. Bolcskei; D. Gesbert; and A.J. Paulraj, “On the capacity of OFDM-based spatial multiplexing systems,” IEEE Trans. Commun., vol. 50, no. 2, pp. 225–234, Feb. 2002.
[46] A. F. Molisch et al., “Hybrid beamforming for massive MIMO: A survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, Sep. 2017.
[47] F. Sohrabi and W. Yu, “Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1432–1443, Jul. 2017.
[48] M. Ma, N. T. Nguyen, and M. Juntti, “Closed-form hybrid beamforming solution for spectral efficiency upper bound maximization in mmWave MIMO-OFDM systems,” in 2021 IEEE 94th Vehicular Technology Conference (VTC-Fall), Sep. 2021, pp. 1–5.
[49] T. Lin, J. Cong, Y. Zhu, J. Zhang, and K. B. Letaief, “Hybrid beamforming for millimeter wave systems using the MMSE criterion,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3693–3708, May. 2019.
[50] J. Du, W. Xu, C. Zhao, and L. Vandendorpe, “Weighted spectral efficiency optimization for hybrid beamforming in multiuser massive MIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 9698–9712, Oct. 2019.
[51] Y. Liu and J. Wang, “Low-complexity OFDM-based hybrid precoding for multiuser massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 9, no. 3, pp. 263–266, Mar. 2020.
[52] J. Jung, W. Lee, Y. Lee, J. Kim, and H. Song, “Improved hybrid beamforming for mmWave multi-user massive MIMO,” Computers, Materials & Continua, vol. 67, no.3, pp. 3057–3070, 2021.
[53] H. Yuan, J. An, N. Yang, K. Yang, and T. Q. Duong, “Low complexity hybrid precoding for multiuser millimeter wave systems over frequency selective channels,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 983–987, Jan. 2019.
[54] D. Zhang, Y. Wang, X. Li, and W. Xiang, ‘‘Hybrid beamforming for downlink multiuser millimetre wave MIMO-OFDM systems,’’ IET Commun., vol. 13, no. 11, pp. 1557–1564, Jul. 2019.
[55] S. Gherekhloo, K. Ardah, and M. Haardt, “Hybrid beamforming design for downlink MU-MIMO-OFDM millimeter-wave systems,” in Proc. IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Jun. 2020, pp. 1–5.
[56] Y. Chen, D. Chen, T. Jiang, and L. Hanzo, “Channel-covariance and angle-of-departure aided hybrid precoding for wideband multiuser millimeter wave MIMO systems,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8315–8328, Dec. 2019.
[57] Y. Sun, H. Wang, M. Yuan, T. Zhu, and A. Kawoya, “Training-Based Hybrid Precoding Scheme for Multiuser Massive MIMO-OFDM,” IEEE Commun. Lett., vol. 25, no. 11, pp. 3729–3732, Nov. 2021.
[58] R. Chen, Z. Shen, J. G. Andrews, and R. W. Heath, Jr., “Multimode transmission for multiuser MIMO systems with block diagonalization,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3294–3302, Jul. 2008.
[59] Y.-U. Jang, H. M. Kwon, and Y. H. Lee, “Adaptive mode selection for multiuser MIMO downlink systems,” in Proc. Veh. Technol. Conf., vol. 4, pp. 2003–2007, May. 2006.
[60] Z. Li, S. Han, and A. F. Molisch, “Optimizing channel-statistics-based analog beamforming for millimeter-wave multi-user massive MIMO downlink,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4288–4303, Jul. 2017.
[61] G. Kwon and H. Park, “Limited feedback hybrid beamforming for multimode transmission in wideband millimeter wave channel,” IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 4008–4022, Jun. 2020.
[62] S. Wang, M. He, and R. Ruby, “SVM-Based Optimization on the Number of Data Streams for Massive MIMO Systems,” IEEE Systems Journal., Jan. 2022, pp. 1-4
[63] Y. Yuan and L. Zhu, “Application scenarios and enabling technologies of 5G,” China Communications, vol. 11, no. 11, pp. 69-79, Nov. 2014.
[64] I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, ‘‘Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 870–913, 2nd Quart., 2018.
[65] Z. Gao, C. Hu, L. Dai, and Z. Wang, “Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1259–1262, Jun. 2016.
[66] J. P. Gonzalez-Coma, J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, and L. Castedo, “Channel estimation and hybrid precoding/combining for frequency selective multiuser mmWave systems,” in Proc. Global Commun. Conf., Dec. 2017, pp. 1–6.
[67] J. P. Gonzalez-Coma, J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, L. Castedo, and R. W Heath, “Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 353–367, May 2018.
[68] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
[69] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: Ten myths and one critical question,” IEEE Commun. Mag., vol. 54, no. 2, pp. 114–123, Feb. 2016.
[70] B. Farhang-Boroujeny, Q. Spencer, and L. Swindlehurst, “Layering techniques for space-time communications in multi-user networks,” in Proc. IEEE Veh. Technol. Conf., vol. 2, pp. 1339–1342, Oct. 2003.
[71] L. Arévalo, R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Uplink block diagonalization for massive MIMO-OFDM systems with distributed antennas,” in Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Process. (CAMSAP), pp. 889-892, Dec. 2015.
[72] R. L. Choi, M. T. Lvrlac, R. D. Murch, and J. A. Nossek, “Joint transmit and receive multi-user MIMO decomposition approach for the downlink of multi-user MIMO systems,” in Proc. IEEE Veh. Technol. Conf., Oct. 2003, pp. 409-413.
[73] H. An, M. Mohaisen, D. Han, and K. Chang, “Coordinated transmit and receive processing with adaptive multi-stream selection,” in Proc. IEEE Int. Conf. Communications, Networking, and Mobile Computing (WiCOM), Sep. 2010, pp. 1–5.
[74] P.-H. Lee and Y.-P. Lin, ‘‘Hybrid MIMO-OFDM for downlink multiuser communications over millimeter channels with no instantaneous feedback,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.
[75] R. Zhang, W. Zou, Y. Wang, M. Cui, and X. Sun, “Alternate hybrid precoding algorithm for wideband millimetre wave massive MIMO systems,” IET Commun., vol. 14, no. 8, pp. 1261– 1267, May. 2020.
[76] X. Yu, J. Zhang, and K. B. Letaief, “Alternating minimization for hybrid precoding in multiuser OFDM mmWave systems,” in Proc. 50th Asilomar Conf. Signals Syst. Comput., Nov. 2016, pp. 281–285.
[77] G. H. Golub and C. F. Van Loan, “Matrix Computations,” John Hopkins Uni. Press, 4th edition, 2013.
[78] M. Holmes, A. Gray, and C. Isbell, “Fast SVD for large-scale matrices,” in Proc. Workshop Efficient Mach. Learn. NIPS, 2007, pp. 249–252.
[79] S. Hur et al., “Wideband spatial channel model in an urban cellular environments at 28 GHz,” in Proc. Eur. Conf. Antennas Propag. (EuCAP), Apr. 2015, pp. 1–5.
[80] S. Wu, S. Hur, K. Whang, and M. Nekovee, ‘‘Intra-cluster characteristics of 28 GHz wireless channel in urban micro street canyon,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.
[81] J. Ko et al., “Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz,” IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5853–5868, Sep. 2017.
[82] “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on channel model for frequencies from 0.5 to 100 GHz (Release 16),” 3GPP Technical Report (TR) 38.901 V16.1.0, 2019.
[83] V. Stankovic, and M. Haardt, “Generalized design of multi-user MIMO precoding matrices,” IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 953–961, Mar. 2008.