| 研究生: |
賴鵬翔 Peng-Xiang Lai |
|---|---|
| 論文名稱: | Applying the ensemble singular vector to study the forecast sensitivity of the heavy rainfall event on 2nd June 2017 |
| 指導教授: |
楊舒芝
Shu-Chih Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 敏感度分析 、系集奇異向量 、系集預報 、梅雨鋒面 |
| 外文關鍵詞: | Sensitivity Analysis, Ensemble Singular Vector, Ensemble Forecast, Mei-Yu Front |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於2017年6月1日至2日,在八小時內梅雨鋒面為台灣北部帶來超過600毫米的累積雨量。與此同時,系集降雨預報在此區域有極大不確定性。因此,為了瞭解影響此區域降水預報的初始擾動分布,我們採用系集奇異向量(ESV)進行敏感度分析,並將校驗區域與時間選擇於6月2日00 UTC的北部沿海區域。根據初始奇異向量結果,於6月1日12 UTC中國東南沿海的梅雨鋒面附近,沿鋒面的風切會影響在12小時後在台灣北部地區東北風與低層噴流的關係,並進一步導致鋒面位置與走向的差異。 為了進一步驗證,我們將系集以初始奇異向量進擾動並預報,結果顯示12小時預報的差異與最終奇異向量(FESV)吻合,並且當進行正負向擾動時,分別可以有效使雨帶靠近以及遠離台灣北部。然而,當使用較大校驗區域時,由於樣本誤差以及模式非線性的發展,會使FESV與擾動預報的結果有所差異。
因此,我們嘗試建立局地系集奇異向量方法,針對相同的校驗區域逐個計算每個小區域的初始敏感度。整體來說,在這個案中局地與全域奇異向量法結果相近,但可有效減少模糊的訊號,且擾動預報上仍能有效改變降雨的分布。簡而言之,局地奇異向量法可正確地找出初始敏感度的分布,並且兩種方法皆可有效與系集預報結合並且幫助局地分析。
The ensemble forecast for the heavy rainfall event on 2nd June 2017 which precipitated over 600 mm during 8 hours is found to have large uncertainty over northern Taiwan. To investigate the distribution of fast-growing initial perturbations that affect the rainfall distribution, the ensemble singular vector (ESV) sensitivity analysis is conducted, and the verification region is defined along the northern coast of Taiwan at 060200 UTC. The fastest-growing mode represented by the initial ensemble singular vector (IESV) is defined as the wind shift line located near southeastern China offshore, which affects the interaction between the northeasterly and the low-level barrier-jet 12 hours later in northern Taiwan shown by the final ensemble singular vector (FESV). By comparing the unperturbed forecast with the ones perturbed by the IESV, the FESV agrees with the evolution of initial perturbations under the non-linear model dynamic to a great extent and causes variations in the position of the convection line, which allows the rain band being effectively moved close to and away from land with the positive and negative perturbed forecast, respectively. However, the ESV under a global perspective may be less robust when applied to complex mesoscale systems inside a broader final verification region with sampling error problems or strong model nonlinearity.
Therefore, we attempt to construct the local ESV which is computed sequentially redefining the initial domain with a local patch for each grid with the same final verification region. The local FESV can perform a similar sensitivity to global FESV but has IESV with a less ambiguous signal. The perturbed forecast from the local IESV also has a good agreement with the global FESV, which effectively adjusts the rainband as well. The local ESV provides a useful way to properly distribute initial sensitive perturbations. Finally, both global and local ESV has the potential to be incorporated with the ensemble forecast and local analysis framework.
Ancell, B., and G. J. Hakim, 2007: Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to Observation Targeting. Mon. Wea. Rev., 135, 4117-4134, https://doi.org/10.1175/2007mwr1904.1.
Barkmeijer, J., R. Buizza, T. N. Palmer, K. Puri, and J. F. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127, 685-708, https://doi.org/10.1002/qj.49712757221.
Bishop, C. H., and Z. Toth, 1999: Ensemble Transformation and Adaptive Observations. J. Atmos. Sci., 56, 1748-1765,
https://doi.org/10.1175/1520-0469(1999)056<1748:Etaao>2.0.Co;2.
Buizza, R., and A. Montani, 1999: Targeting Observations Using Singular Vectors. J. Atmos. Sci., 56, 2965-2985,
https://doi.org/10.1175/1520-0469(1999)056<2965:Tousv>2.0.Co;2.
Buizza, R., J. Tribbia, F. Molteni, and T. Palmer, 1993: Computation of optimal unstable structures for a numerical weather prediction model. Tellus, 45, 388-407,
https://doi.org/10.3402/tellusa.v45i5.14901.
Chen, G. T.-J., and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Wea. Rev., 116, 884-891, https://doi.org/10.1175/1520-0493(1988)116<0884:Sollja>2.0.Co;2.
Chen, G. T.-J., and H.-C. Chou, 1993: General characteristics of squall lines observed in TAMEX. Mon. Wea. Rev., 121, 726-733,
https://doi.org/10.1175/1520-0493(1993)121<0726:GCOSLO>2.0.CO;2.
Chen, Y.-L., Y.-X. Zhang, and N. B.-F. Hui, 1989: Analysis of a surface front during the early summer rainy season over Taiwan. Mon. Wea. Rev., 117, 909-931,
https://doi.org/10.1175/1520-0493(1989)117<0909:Aoasfd>2.0.Co;2.
Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122, 2257-2284,
https://doi.org/10.1175/1520-0493(1994)122<2257:Adsotl>2.0.Co;2.
Chen, Y.-L., Y.-J. Chu, C.-S. Chen, C.-C. Tu, J.-H. Teng, and P.-L. Lin, 2018: Analysis and simulations of a heavy rainfall event over northern Taiwan during 11–12 June 2012. Mon. Wea. Rev., 146, 2697-2715, https://doi.org/10.1175/mwr-d-18-0001.1.
Dudhia, J., 1989: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci., 46, 3077-3107, https://doi.org/10.1175/1520-0469(1989)046<3077:Nsocod>2.0.Co;2.
Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 1627-1648, https://doi.org/10.1175/1520-0469(1999)056<1627:SVPGIA>2.0.CO;2.
Enomoto, T., S. Yamane, and W. Ohfuchi, 2015: Simple Sensitivity Analysis Using Ensemble Forecasts. J. Meteorol. Soc. Jpn., 93, 199-213,
https://doi.org/10.2151/jmsj.2015-011.
Enomoto, T., W. Ohfuchi, H. Nakamura, and M. A. Shapiro, 2007: Remote effects of tropical storm Cristobal upon a cut-off cyclone over Europe in August 2002. Meteor. Atmos. Phys., 96, 29-42, https://doi.org/10.1007/s00703-006-0219-2.
Gelaro, R., R. Buizza, T. N. Palmer, and E. Klinker, 1998: Sensitivity analysis of forecast errors and the construction of optimal perturbations using singular vectors. J. Atmos. Sci., 55, 1012-1037,
https://doi.org/10.1175/1520-0469(1998)055<1012:SAOFEA>2.0.CO;2.
He, H., J. W. McGinnis, Z. Song, and M. Yanai, 1987: Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev., 115, 1966-1995, https://doi.org/10.1175/1520-0493(1987)115<1966:Ootasm>2.0.Co;2.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., 134, 2318-2341,
https://doi.org/10.1175/mwr3199.1.
Jou, B. J.-D., and S.-M. Deng, 1992: Structure of a low-level jet and its role in triggering and organizing moist convection over Taiwan: A TAMEX case study. Terr. Atmos. Oceanic Sci, 3, 39-58, https://www.researchgate.net/publication/279694020.
Kain, J. S., 2004: The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteor., 43, 170-181,
https://doi.org/10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2.
Kalnay, E., 2003: Atmospheric modeling, data assimilation and predictability. Cambridge university press.
Kim, H. M., and B.-J. Jung, 2009: Influence of moist physics and norms on singular vectors for a tropical cyclone. Mon. Wea. Rev., 137, 525-543,
https://doi.org/10.1175/2008MWR2739.1.
Kuo, Y.-H., and G. T.-J. Chen, 1990: The Taiwan Area Mesoscale Experiment (TAMEX): An overview. Bull. Amer. Meteor. Soc., 71, 488-503,
https://doi.org/10.1175/1520-0477(1990)071<0488:Ttamea>2.0.Co;2.
Lacarra, J.-F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus, 40, 81-95, https://doi.org/10.3402/tellusa.v40i2.11784.
Langland, R. H., M. A. Shapiro, and R. Gelaro, 2002: Initial Condition Sensitivity and Error Growth in Forecasts of the 25 January 2000 East Coast Snowstorm. Mon. Wea. Rev., 130, 957-974,
https://doi.org/10.1175/1520-0493(2002)130<0957:Icsaeg>2.0.Co;2.
Li, J., Y.-L. Chen, and W.-C. Lee, 1997: Analysis of a heavy rainfall event during TAMEX. Mon. Wea. Rev., 125, 1060-1082,
https://doi.org/10.1175/1520-0493(1997)125<1060:Aoahre>2.0.Co;2.
Lin, P.-L., Y.-L. Chen, C.-S. Chen, C.-L. Liu, and C.-Y. Chen, 2011: Numerical experiments investigating the orographic effects on a heavy rainfall event over the northwestern coast of Taiwan during TAMEX IOP 13. Meteor. Atmos. Phys., 114, 35-50,
https://doi.org/10.1007/s00703-011-0155-7.
Lin, Y.-J., T.-C. C. Wang, R. W. Pasken, H. Shen, and Z.-S. Deng, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part II: Dynamic and thermodynamic structures and momentum budgets. J. Atmos. Sci., 47, 2382-2399,
https://doi.org/10.1175/1520-0469(1990)047<2382:Coassl>2.0.Co;2.
Lupo, K. M., R. D. Torn, and S.-C. Yang, 2020: Evaluation of stochastic perturbed parameterization tendencies on convective-permitting ensemble forecasts of heavy rainfall events in New York and Taiwan. Wea. Forecasting, 35, 5-24, https://doi.org/10.1175/WAF-D-19-0064.1.
Matsueda, M., M. Kyouda, Z. Toth, H. L. Tanaka, and T. Tsuyuki, 2011: Predictability of an Atmospheric Blocking Event that Occurred on 15 December 2005. Mon. Wea. Rev., 139, 2455-2470, https://doi.org/10.1175/2010mwr3551.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682,
https://doi.org/10.1029/97JD00237.
Nishii, K., and H. Nakamura, 2010: Three-dimensional evolution of ensemble forecast spread during the onset of a stratospheric sudden warming event in January 2006. Quart. J. Roy. Meteor. Soc., 136, 894-905, https://doi.org/10.1002/qj.607.
Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127, 709-731, https://doi.org/10.1002/qj.49712757222.
Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122, 121-150,
https://doi.org/10.1002/qj.49712252906.
Tao, W.-K., J. Simpson, and M. McCumber, 1989: An Ice-Water Saturation Adjustment. Mon. Wea. Rev., 117, 231-235,
https://doi.org/10.1175/1520-0493(1989)117<0231:Aiwsa>2.0.Co;2.
Teng, J.-H., C.-S. Chen, T.-C. C. Wang, and Y.-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128, 1123-1138,
https://doi.org/10.1175/1520-0493(2000)128<1123:Oeoasl>2.0.Co;2.
Torn, R. D., and G. J. Hakim, 2008: Ensemble-Based Sensitivity Analysis. Mon. Wea. Rev., 136, 663-677, https://doi.org/10.1175/2007mwr2132.1.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and Y. Du, 2019: Characteristics of the marine boundary layer jet over the South China Sea during the early summer rainy season of Taiwan. Mon. Wea. Rev., 147, 457-475,
https://doi.org/10.1175/mwr-d-18-0230.1.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and P.-H. Lin, 2020: The relationship between the boundary layer moisture transport from the South China Sea and heavy rainfall over Taiwan. Terr. Atmos. Oceanic Sci., 31, 159-176,
https://doi.org/10.3319/tao.2019.07.01.01.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and M.-Q. Huang, 2022: Analysis and Simulations of a Heavy Rainfall Event Associated with the Passage of a Shallow Front over Northern Taiwan on 2 June 2017. Mon. Wea. Rev., 150, 505-528,
https://doi.org/10.1175/mwr-d-21-0113.1.
Wang, C.-C., B.-K. Chiou, G. T.-J. Chen, H.-C. Kuo, and C.-H. Liu, 2016: A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11–12 June 2012. Atmos. Chem. Phys., 16, 12359-12382, https://doi.org/10.5194/acp-16-12359-2016.
Wang, C.-C., M.-S. Li, C.-S. Chang, P.-Y. Chuang, S.-H. Chen, and K. Tsuboki, 2021: Ensemble-based sensitivity analysis and predictability of an extreme rainfall event over northern Taiwan in the Mei-Yu season: The 2 June 2017 case. Atmos. Res., 259, 105684, https://doi.org/10.1016/j.atmosres.2021.105684.
Wang, T.-C. C., Y.-J. Lin, R. W. Pasken, and H. Shen, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part I: Kinematic structure. J. Atmos. Sci., 47, 2357-2381,
https://doi.org/10.1175/1520-0469(1990)047<2357:Coassl>2.0.Co;2.
Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C. Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555-2574,
https://doi.org/10.1175/mwr-d-11-00208.1.
Yang, S.-C., E. Kalnay, and T. Enomoto, 2015: Ensemble singular vectors and their use as additive inflation in EnKF. Tellus, 67, 26536,
https://doi.org/10.3402/tellusa.v67.26536.
Yeh, H.-C., and Y.-L. Chen, 2002: The role of offshore convergence on coastal rainfall during TAMEX IOP 3. Mon. Wea. Rev., 130, 2709-2730,
https://doi.org/10.1175/1520-0493(2002)130<2709:TROOCO>2.0.CO;2.
——, 2003: Numerical simulations of the barrier jet over northwestern Taiwan during the mei-yu season. Mon. Wea. Rev., 131, 1396-1407, https://doi.org/10.1175/1520-0493(2003)131<1396:Nsotbj>2.0.Co;2.
Zou, X., Y.-H. Kuo, and S. Low-Nam, 1998: Medium-range prediction of an extratropical oceanic cyclone: Impact of initial state. Mon. Wea. Rev., 126, 2737-2763, https://doi.org/10.1175/1520-0493(1998)126<2737:MRPOAE>2.0.CO;2