| 研究生: |
許壬瀚 Ren-Han,Hsu |
|---|---|
| 論文名稱: |
自含檸檬酸鈉鍍浴中電鍍銅鎳合金微柱並探討 其形貌、組成、構造與性質 On the microstructure and property of 3-D Cu-Ni alloying micro features electrodeposited from citrate |
| 指導教授: |
林景崎
Jing-Chie,Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 微陽極導引電鍍 、銅鎳合金 、葡萄糖感測器 、檸檬酸鈉螯合物 、銅鎳電鍍分佈 、場發射電子微探分析 |
| 外文關鍵詞: | MAGE, Copper-Nickel alloy, glucose sensor, citrate chelate, distribution of copper –nickel electrodeposition, EPMA |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用微陽極導引電鍍法,自含銅、鎳之檸檬酸鈉鍍浴中製備銅鎳合金微柱,內容在探討析鍍物之表面形貌、組成、晶體構造與性質受鍍浴pH值與陰、陽兩極偏壓之影響。結果顯示:在4.0 V偏壓下,鍍浴pH 由4.5增加至6.5時,所得微柱的晶粒稍有增大(由13nm增加至14nm),表面形貌趨向平坦化,所含鎳由33.5%增至54.8%。在鍍浴pH 4.5下,電壓自4.0 V增高至4.6 V,微柱的晶粒稍有細化(由13nm到11nm),鎳含量由33.5%增至52.6%。XRD分析顯示微柱為異質同晶(isomorphous )之銅鎳合金。進一步EPMA分析顯示: 微柱內部銅與鎳之分布之均勻性受實驗條件之影響。鍍浴pH 自 4.5升高到6.5 有助於微柱中銅與鎳分布較均勻化。因微柱屬於奈米晶體,以奈米壓痕器測得硬度可高達6.9 GPa,比一般商用銅鎳合金(0.6~1.65GPa)高出許多。
藉由動態陰極極化曲線、配合定電位下電化學阻抗頻譜之分析,可以說明電壓改變情況下銅鎳合金組成差異之反應機制。經COMSOL軟體實驗中之電場分布,有助於說明微柱之表面形貌與組成之變化。陰、陽極間之圓柱形電場,顯示柱心處電場較強(電力線分布較高),由陰極極化結果可知電場較強,鎳優先析鍍,因而微柱中心鎳組成偏高,鍍浴若由pH4.5上升到6.5,柱中心與周圍之電場分布差逐漸接近,且銅之螯合物以(Cu2Cit2H−2)4−)比(Cu2Cit2H−1)3−占優勢,促使銅、鎳有較均勻之分布。量測電流對時間關係圖可估計析鍍電量,對應微柱重量,可計算出微柱析鍍之電流效率,電流效率最高達到76.1%。電壓增大與pH的升高下,電流效率下降。
應用上,銅鎳合金微柱的恆電位實驗有助於研究其作為葡萄糖感測器的可行性。結果顯示: 微柱組成會影響電流密度偵測之線性範圍,(銅/鎳at%)若在60/40 at%時,線性區域在0mM至3.0mM之間,比組成銅/鎳at%在40/60時,線性區域在0mM至0.25mM稍大,然而後者對葡萄糖濃度靈敏度較高。本製程所得銅鎳微柱對葡萄糖感測之靈敏度,比其他材料高,由文獻得知原因可能是因為微柱的奈米晶粒,使電極表面上的電催化活性位置大幅增加,增進電子轉移之數量。
Micro-anode guided electroplating (MAGE) process was employed to prepare copper-nickel alloy micro-pillars in the citrate bath containing nickel and copper ions.The effect of the bath pH and the voltage between cathode and anode on the surface morphology, composition, crystal structure and the properties of the pillars was studied.The results indicated that for the MAGE conducted at 4.0 V, with the bath pH increasing from 4.5 to 6.5, the micropillars were fabricated to show a more fattened surface, a slight increase in their grain sizes from 13 nm to 14 nm, and an increase of Ni-content 33.5% to 54.8%. On other hand, for MAGE performed at pH 4.5 with increasing the voltage from 4.0 V to 4.6 V, the micropillars revealed a little decrease in grain sizes (from 13nm to 11nm), and the nickel content increased from 33.5% to 52.6%. XRD analysis showed that the micropillars belonged to isomorphous Cu-Ni alloys. Analysis by EPMA revealed that concentrated nickel was found at the central pillars as they fabricated from the bath with pH of 4.5. The distribution of Ni and Cu tended to more uniform when the MAGE performed in the bath with increasing pH from 4.5 to 6.5,. Because of the nanocrystals inside the micropillars, the hardness evaluated by a nanoindenter testing displayed the highest value at 6.9 GPa, which is much higher than those (0.6 ~ 1.65 GPa) for common commercial Cu-Ni alloys.
Cathodic polarization curve can explain the changing ratio of Cu-Ni alloy at variable voltages. The simulation of electric field distribution in MAGE by COMSOL gives the way to comprehend dependence of the surface morphology and composition of the micropillars on the experimental conditions. The chelate change promote a more even distribution of copper and nickel. The current efficiency can be calculated by current vs. time and the weight of micro-pillars. The current efficiency can reach to 76.1%.
Constant potential experiment can study the feasibility of Cu-Ni alloy micropillars as glucose sensors. The results of the studys show that the composition will affect the linear range of current density detection.When (Cu-Ni at%) is 60/40 at%, the linear region is 0mM to 3.0mM; When (Cu-Ni at%) is 40/60 at%, the linear region is 0 mM and 0.25 mM.The increasing of nickel results smaller linear region but the glucose concentration is more sensitive.The Cu-Ni micropillars in this process obtain higher sensitivity than other materials because the grains of micropillars are nanocrystalline Nanocrystal grains of the micropillars greatly increase the electrocatalytic active sites on the electrode surface and increase the amount of electron transfer.
顧乃華, "以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2015.
[2] 陳譽升, "鎳微柱電鍍受鍍浴黏度與電阻率之影響," 博士, 機械工程研究所, 國立中央大學, 桃園縣, 2011.
[3] 張翔, "銅鎳合金微結構之微電鍍研究," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2018.
[4] 羅元成, "微米尺寸銅鎳合金電阻材料之電鍍與特性研究," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2019.
[5] 林佳政, "電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2019.
[6] X. Guan, "以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2019.
[7] R. Qiu, X. L. Zhang, R. Qiao, Y. Li, Y. I. Kim, and Y. S. Kang, "CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor," Chemistry of materials, vol. 19, no. 17, pp. 4174-4180, 2007.
[8] A. Brenner, Electrodeposition of alloys: principles and practice. Elsevier, 2013.
[9] F. A. Lowenheim and J. Davis, "Modern electroplating," Journal of The Electrochemical Society, vol. 121, no. 12, p. 397C, 1974.
[10] L. C. Melo, P. de Lima-Neto, and A. N. Correia, "The influence of citrate and tartrate on the electrodeposition and surface morphology of Cu–Ni layers," Journal of Applied Electrochemistry, vol. 41, no. 4, pp. 415-422, 2011.
[11] I. Mizushima, M. Chikazawa, and T. Watanabe, "Microstructure of Electrodeposited Cu‐Ni Binary Alloy Films," Journal of the Electrochemical Society, vol. 143, no. 6, p. 1978, 1996.
[12] S. Wang et al., "Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid," Applied Surface Science, vol. 288, pp. 530-536, 2014.
[13] R. Y. Ying, P. K. Ng, Z. Mao, and R. E. White, "Electrodeposition of Copper‐Nickel Alloys from Citrate Solutions on a Rotating Disk Electrode: II. Mathematical Modeling," Journal of the Electrochemical Society, vol. 135, no. 12, p. 2964, 1988.
[14] A. Rashidi and A. Amadeh, "The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings," Surface and Coatings Technology, vol. 204, no. 3, pp. 353-358, 2009.
[15] Y. Li, J. Yao, and X. Huang, "Effect of Saccharin on the process and properties of nickel electrodeposition from sulfate electrolyte," Int. J. Metall. Mater. Eng, vol. 2, p. 123, 2016.
[16] T. Green, A. Russell, and S. Roy, "The Development of a Stable Citrate Electrolyte for the Electrodeposition of Copper‐Nickel Alloys," Journal of the Electrochemical Society, vol. 145, no. 3, p. 875, 1998.
[17] S. Rode, C. Henninot, C. Vallières, and M. Matlosz, "Complexation chemistry in copper plating from citrate baths," Journal of the Electrochemical Society, vol. 151, no. 6, p. C405, 2004.
[18] R. Oriňáková, A. Turoňová, D. Kladeková, M. Gálová, and R. M. Smith, "Recent developments in the electrodeposition of nickel and some nickel-based alloys," Journal of Applied Electrochemistry, vol. 36, no. 9, pp. 957-972, 2006.
[19] M. Alper, H. Kockar, M. Safak, and M. C. Baykul, "Comparison of Ni–Cu alloy films electrodeposited at low and high pH levels," Journal of Alloys and Compounds, vol. 453, no. 1-2, pp. 15-19, 2008.
[20] M. Haciismailoglu and M. Alper, "Effect of electrolyte pH and Cu concentration on microstructure of electrodeposited Ni–Cu alloy films," Surface and Coatings Technology, vol. 206, no. 6, pp. 1430-1438, 2011.
[21] S. Mohan and N. Rajasekaran, "Influence of electrolyte pH on composition, corrosion properties and surface morphology of electrodeposited Cu–Ni alloy," Surface engineering, vol. 27, no. 7, pp. 519-523, 2011.
[22] J. M. Lee, K. M. Bae, K. K. Jung, J. H. Jeong, and J. S. Ko, "Creation of microstructured surfaces using Cu–Ni composite electrodeposition and their application to superhydrophobic surfaces," Applied surface science, vol. 289, pp. 14-20, 2014.
[23] J. D. Madden and I. W. Hunter, "Three-dimensional microfabrication by localized electrochemical deposition," Journal of microelectromechanical systems, vol. 5, no. 1, pp. 24-32, 1996.
[24] E. El-Giar and D. Thomson, "Localized electrochemical plating of interconnectors for microelectronics," in IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, 1997, pp. 327-332: IEEE.
[25] R. Said, "Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling," Nanotechnology, vol. 14, no. 5, p. 523, 2003.
[26] S. Yeo and J. Choo, "Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition," Journal of micromechanics and microengineering, vol. 11, no. 5, p. 435, 2001.
[27] S. Yeo, J. Choo, and K. Sim, "On the effects of ultrasonic vibrations on localized electrochemical deposition," Journal of micromechanics and microengineering, vol. 12, no. 3, p. 271, 2002.
[28] S. Seol et al., "Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition," Electrochemical and Solid State Letters, vol. 7, no. 9, p. C95, 2004.
[29] S. Seol, J. Kim, J. Je, Y. Hwu, and G. Margaritondo, "Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition," Electrochemical and Solid State Letters, vol. 10, no. 5, p. C44, 2007.
[30] C. Lin, C. Lee, J. Yang, and Y. Huang, "Improved copper microcolumn fabricated by localized electrochemical deposition," Electrochemical and Solid State Letters, vol. 8, no. 9, p. C125, 2005.
[31] C.-Y. Lee, C.-S. Lin, and B.-R. Lin, "Localized electrochemical deposition process improvement by using different anodes and deposition directions," Journal of Micromechanics and Microengineering, vol. 18, no. 10, p. 105008, 2008.
[32] 陳承志, "銅基材上之單軸微電析鎳製程研究," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 1999.
[33] 游絢博, "陽極單軸間歇運動下之直流、脈衝微電析鎳," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2000.
[34] 游睿為, "單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2001.
[35] 葉柏青, "微陽極引導電鍍與監測," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2003.
[36] 張庭綱, "微陽極導引電鍍法製作微銅柱及銅柵欄之研究," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2004.
[37] J. Lin et al., "Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating," Journal of Micromechanics and Microengineering, vol. 15, no. 12, p. 2405, 2005.
[38] 鄭家宏, "以微陽極導引電鍍法製作鎳銅合金微柱," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2005.
[39] J. Yang, J. Lin, T. Chang, X. You, and S. Jiang, "Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process," Journal of Micromechanics and Microengineering, vol. 19, no. 2, p. 025015, 2009.
[40] J. Lin, J. Yang, T. Chang, and S. Jiang, "On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating," Electrochimica Acta, vol. 54, no. 24, pp. 5703-5708, 2009.
[41] T.-C. Chen, Y.-R. Hwang, J.-C. Lin, and Y.-J. Ciou, "The Development of a Real-Time Image Guided Micro Electroplating System," Int. J. Electrochem. Sci, vol. 5, pp. 1810-1820, 2010.
[42] Y.-R. Hwang, J.-C. Lin, and T.-C. Chen, "The analysis of the deposition rate for continuous micro-anode guided electroplating process," International Journal of Electrochemical Science, vol. 7, no. 2, pp. 1359-1370, 2012.
[43] 邱永傑, "即時影像導引局部電化學沉積系統製作立 體微結構物之研究," 博士, 機械工程學系, 國立中央大學, 桃園縣, 2016.
[44] Y.-J. Ciou, Y.-R. Hwang, and J.-C. Lin, "Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing," ECS Journal of Solid State Science and Technology, vol. 3, no. 7, p. P268, 2014.
[45] 張永杰, "即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2013.
[46] I. Pötzelberger, A. I. Mardare, and A. W. Hassel, "Non-enzymatic glucose sensing on copper-nickel thin film alloy," Applied Surface Science, vol. 417, pp. 48-53, 2017.
[47] L. Zhang et al., "A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor," Nano-micro letters, vol. 10, no. 2, p. 28, 2018.
[48] A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, and J. Guan, "One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing," Applied Surface Science, vol. 402, pp. 70-77, 2017.
[49] 温雅絜, "矩陣式多陽極即時影像局部電鍍控制系統之研究," 碩士, 光機電工程研究所, 國立中央大學, 桃園縣, 2018.