| 研究生: |
林宛穎 Wan-Ying Lin |
|---|---|
| 論文名稱: |
氮摻雜石墨化陶瓷氧化物之甲醇氧化觸媒 Nitrogen-graphitized metal oxides as support for methanol oxidation catalysts |
| 指導教授: |
諸柏仁
Peter Po-Jen chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 陽極觸媒 、觸媒載體 、甲醇氧化反應 、聚苯胺 、含氮石墨化金屬氧化物 、奈米金屬顆粒 、循環伏安法 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接甲醇燃料電池(DMFC)具有較高的能量轉換率和低污染的優點,但其高成本為實現大規模商業化應用的重大挑戰。在直接甲醇燃料電池中所需的陽極觸媒多以鉑金屬為基礎。因此開發有效的觸媒載體降低鉑金屬的使用以降低成本時,也必須兼顧增加觸媒的活性;此目標為發展燃料電池技術的首要課題。金屬氧化物材料作為觸媒載體近年來受到越來越受關注,主要是因其固有奈米尺寸的顆粒和電化學穩定性極有利於觸媒金屬和載體間的相互作用,可以穩定金屬顆粒協助燃料反應並提昇質子傳導性。然而金屬氧化物受限於低表面積和低電子導電性,抑制了觸媒活性。本論文研究方向是使用導電的碳材料修飾金屬氧化物材料改良以上缺點作為燃料電池奈米觸媒之載體。
研究第一部分以不同的金屬氧化物(二氧化鈦,二氧化矽和二氧化鋯)包覆一薄層的導電性聚合物(聚苯胺),接著在900 0C氮氣氣氛下石墨化形成含氮石墨化金屬氧化物(Nitrogen Graphitized Metal Oxide, NG-MO)。含氮的石墨層可以增加電子傳遞,提供穩定金屬顆粒。穿透式電子顯微鏡影像顯示鉑奈米粒子在NG-MO的分散比一般碳材(XC-72)或其他石墨碳材好,鉑金屬穩定顆粒大小大約3〜4nm。電流密度循環伏安法顯示Pt/ NG-MO具有比其他載體像是XC-72或商用觸媒(E-TEK)更高的甲醇氧化活性。甲醇氧化活性會隨著金屬氧化物不同而有所改變,MOR最好的金屬氧化物載體為SiO2。但將Pt /NG-MO和商用觸媒(E-TEK)比較,穩定性都沒有一般商用觸媒(E-TEK)好。
第二部分研究中探討聚苯胺含量對催化行為的影響。在三種不同金屬氧化物系統中分別製作聚苯胺和金屬氧化物的比例為1:1、1:5、1:10三種載體並研究觸媒在甲醇氧化的活性。在TiO2系統中金屬氧化物含量多有比較好的甲醇氧化活性;然而在SiO2和ZrO2系統中金屬氧化物含量少反而有比較好的甲醇氧化活性。由此一結果顯示金屬氧化物有可能參與甲醇氧化反應,TiO2在甲醇中會有OH基吸附可以增加甲醇氧化的反應,TiO2較多可以幫助整個氧化反應的進行,而SiO2和ZrO2協助反應的趨勢較少,進行此反應的能力較低。
最後,第三部分的研究也探討雙合金系統在NG-MO載體的觸媒活性和穩定性。在文獻中MOR最好的合金系統是鉑銠合金,所以本研究使用鉑銠合金乘載在不同比例1:1含氮石墨化的金屬氧化物。結果顯示鉑銠合金的觸媒無論是觸媒活性還是穩定性都超越單一鉑金屬,但跟商用觸媒(E-TEK)相比較下穩定性在二氧化矽和二氧化鈦系統中比較好,而在二氧化鋯穩定性比商用觸媒差,這部分還可以做進一步的研究和改進。
Direct methanol fuel cell (DMFC) has the advantages of higher energy conversion rate less air pollution. However, its high cost becomes a major challenge for large-scale commercialization. The development of highly effective catalyst support to reduce the amount of platinum while increasing the activity of the catalyst has become the major goal in fuel cell technology. In recent years, the attempt of treating metal oxide material as catalyst support has drawn increasing attentions. This is primary due to high inherent dimensional and electrochemical stability enhance the interaction between the metal and the support, which help stabilize metal particles with improved fuel reaction and raised proton conductivity. However, limited by the low surface area and low electronic conductivity, metal oxide material inhibits catalytic activity. Purpose of this study is to modify the metal oxide with thin layer of conducting carbon in order to circumvent this deficiency.
The first part of this research examines the activity of such surface functionalized metal oxides (titanium dioxide, silicon dioxide and zirconium dioxide). The nitrogen-graphitized metal oxide (NG-MO) were prepared by first coating a thin layer of conducting polymer (e.g. polyaniline) on ceramic metal oxides (TiO2, SiO2, and ZrO2) followed by graphitization at 900℃under N2 atmosphere. The thin layer of N-containing graphite coated on the ceramics served as electron conductor. Furthermore, it served as stable anchorage for metal nano-catalysts. Surface topography mapping showed that Pt nanoparticle with stable size of 3~4 nm was homogeneously dispersed on NG-MO compared to that on XC-72 or on the other graphite-based carbons. The current density derived from cyclo voltametry suggested that Pt/NG-MO exhibits distinctively higher methanol catalytic performance compared to those at XC-72 supports. The topology of the Pt nanoparticle on NG-MO and its methanol oxidation activity depends heavily on the type of the ceramic metal oxide with SiO2 appeared to give the best results. However, all the Pt/NG-MO system displayed lower life-time durability compared to that of commercial catalyst (E-TEK).
The second part of the research studied the polyaniline content on catalytic behavior. Three supports with polyaniline to metal oxide ratio of 1:1、1:5、1:10 are prepared. In TiO2 system, higher content of metal oxide lead to higher methanol oxidation activity; however, in SiO2 and ZrO2 system, lower content of metal oxide lead to higher methanol oxidation activity .The results showed that metal oxide may be involved in the oxidation reaction of methanol. TiO2 performed better adsorption of OH group, enhancing the methanol oxidation reaction. Better methanol oxidation reaction activity is observed with higher TiO2 . In contrast, SiO2 and ZrO2 served as dormant substrate that the MOR only increases with increasing polyaniline coating.
Finally, the third part of the study explored the effect of NG-MO support on alloy system. We compared the activity and stability of alloy metal catalyst with that on carbon support. Since the platinum-rhodium alloy system displayed the best MOR in the research, we supported the platinum-rhodium alloy on graphite metal oxides containing nitrogen in the proportions of 1:1. The results showed that platinum-rhodium alloy catalyst displayed higher catalytic activity and stability than single-platinum metal. SiO2 and TiO2 system performed better stability than the commercial catalyst (E-TEK), but ZrO2 is much worse. Further work is required to verify such difference.
1. Iwasita, T., Electrocatalysis of methanol oxidation. Electrochimica Acta, 2002. 47(22–23): p. 3663-3674.
2. Zhao, X., et al., Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science, 2011. 4(8): p. 2736.
3. Marković, N.M. and P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts. Surface Science Reports, 2002. 45(4–6): p. 117-229.
4. Arenz, M., et al., The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts. Journal of the American Chemical Society, 2005. 127(18): p. 6819-6829.
5. López-Cudero, A., et al., CO electrooxidation on carbon supported platinum nanoparticles: Effect of aggregation. Journal of Electroanalytical Chemistry, 2010. 644(2): p. 117-126.
6. Vidal-Iglesias, F.J., et al., CO monolayer oxidation on stepped Pt(S) [(n−1)(100)×(110)] surfaces. Electrochimica Acta, 2009. 54(19): p. 4459-4466.
7. Angelucci, C.A., E. Herrero, and J.M. Feliu, Bulk CO oxidation on platinum electrodes vicinal to the Pt(111) surface. Journal of Solid State Electrochemistry, 2007. 11(11): p. 1531-1539.
8. Solla-Gullón, J., et al., CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochemistry Communications, 2006. 8(1): p. 189-194.
9. Farias, M.J.S., et al., On the apparent lack of preferential site occupancy and electrooxidation of CO adsorbed at low coverage onto stepped platinum surfaces. Electrochemistry Communications, 2011. 13(4): p. 338-341.
10. Maillard, F., et al., Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility. Faraday Discussions, 2004. 125: p. 357.
11. Lee, S.W., et al., Roles of Surface Steps on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol. Journal of the American Chemical Society, 2009. 131(43): p. 15669-15677.
12. Strmcnik, D.S., et al., Unique Activity of Platinum Adislands in the CO Electrooxidation Reaction. Journal of the American Chemical Society, 2008. 130(46): p. 15332-15339.
13. Solla-Gullon, J., et al., Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys, 2008. 10(25): p. 3689-98.
14. Ma, L., et al., High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation. Electrochimica Acta, 2009. 54(28): p. 7274-7279.
15. Murthy, A. and A. Manthiram, Direct kinetic evidence for the electronic effect of ruthenium in PtRu on the dissociative adsorption of methanol. Electrochemistry Communications, 2011. 13(4): p. 310-313.
16. Davies, J.C., B.E. Hayden, and D.J. Pegg, The modification of Pt(110) by ruthenium: CO adsorption and electro-oxidation. Surface Science, 2000. 467(1–3): p. 118-130.
17. Teliska, M., W.E. O'Grady, and D.E. Ramaker, J. Phys. Chem. B, 2005. 109: p. 8076.
18. Gasteiger, H.A., et al., Electro-oxidation of small organic molecules on well-characterized PtRu alloys. Electrochimica Acta, 1994. 39(11–12): p. 1825-1832.
19. Spendelow, J.S., et al., Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. Journal of Electroanalytical Chemistry, 2004. 568: p. 215-224.
20. Herrero, E., K. Franaszczuk, and A. Wieckowski, Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study. The Journal of Physical Chemistry, 1994. 98(19): p. 5074-5083.
21. Cao, L., et al., Novel nanocomposite Pt/RuO2x H2O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Ed Engl, 2006. 45(32): p. 5315-9.
22. Ma, J.-H., et al., Promotion by hydrous ruthenium oxide of platinum for methanol electro-oxidation. Journal of Catalysis, 2010. 275(1): p. 34-44.
23. Maillard, F., et al., Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Electrooxidation. The Journal of Physical Chemistry B, 2005. 109(34): p. 16230-16243.
24. Franceschini, E.A., et al., Mesoporous Pt and Pt/Ru alloy electrocatalysts for methanol oxidation. Journal of Power Sources, 2011. 196(4): p. 1723-1729.
25. Kaplan, D., et al., Study of core–shell platinum-based catalyst for methanol and ethylene glycol oxidation. Journal of Power Sources, 2011. 196(3): p. 1078-1083.
26. Jiang, X., et al., Atomic Layer Deposition (ALD) Co-Deposited Pt−Ru Binary and Pt Skin Catalysts for Concentrated Methanol Oxidation. Chemistry of Materials, 2010. 22(10): p. 3024-3032.
27. Jones, S., et al., Promotion of Direct Methanol Electro-oxidation by Ru Terraces on Pt by using a Reversed Spillover Mechanism. ChemCatChem, 2010. 2(9): p. 1089-1095.
28. Sasaki, K., et al., Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochimica Acta, 2004. 49(22-23): p. 3873-3877.
29. Aricò, A.S., et al., Performance of DMFC anodes with ultra-low Pt loading. Electrochemistry Communications, 2004. 6(2): p. 164-169.
30. Park, K.-W., et al., Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation. The Journal of Physical Chemistry B, 2002. 106(8): p. 1869-1877.
31. Tess, M.E., et al., Bimetallic Pt/Ru Complexes as Catalysts for the Electrooxidation of Methanol. Inorganic Chemistry, 2000. 39(17): p. 3942-3944.
32. Yang, C., et al., Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation. Journal of Alloys and Compounds, 2008. 448(1-2): p. 109-115.
33. Liu, Y.C., et al., Influence of preparation process of MEA with mesocarbon microbeads supported Pt–Ru catalysts on methanol electrooxidation. Journal of Applied Electrochemistry, 2002. 32(11): p. 1279-1285.
34. Nitani, H., et al., Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles. Applied Catalysis A: General, 2007. 326(2): p. 194-201.
35. Beard, B.C. and J. Philip N. Ross, The Structure and Activity of Pt-Co Alloys as Oxygen Reduction Electrocatalysts. J. Electrochem. Soc., 1990. 137(11): p. 3368-3374.
36. Appleby, A.J., Catal. Rev., 1970. 4.
37. Jalan, V. and E.J. Taylor, Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid. J. Electrochem. Soc., 1983. 130(11): p. 2299-2302.
38. Zhou, J., et al., Interaction between Pt nanoparticles and carbon nanotubes – An X-ray absorption near edge structures (XANES) study. Chemical Physics Letters, 2007. 437(4-6): p. 229-232.
39. Auer, E., et al., Carbons as supports for industrial precious metal catalysts. Applied Catalysis A: General, 1998. 173(2): p. 259-271.
40. Rodríguez-reinoso, F., The role of carbon materials in heterogeneous catalysis. Carbon, 1998. 36(3): p. 159-175.
41. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88(1-2): p. 1-24.
42. Park, K.-W., et al., Electrocatalytic Enhancement of Methanol Oxidation at Pt−WOx Nanophase Electrodes and In-Situ Observation of Hydrogen Spillover Using Electrochromism. The Journal of Physical Chemistry B, 2003. 107(18): p. 4352-4355.
43. Chen, A., D.J. La Russa, and B. Miller, Effect of the Iridium Oxide Thin Film on the Electrochemical Activity of Platinum Nanoparticles. Langmuir, 2004. 20(22): p. 9695-9702.
44. Chen, Z., et al., Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells. Electrochemistry Communications, 2005. 7(6): p. 593-596.
45. Villullas, H.M., F.I. Mattos-Costa, and L.O.S. Bulhões, Electrochemical Oxidation of Methanol on Pt Nanoparticles Dispersed on RuO2. The Journal of Physical Chemistry B, 2004. 108(34): p. 12898-12903.
46. Jusys, Z., et al., Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. Journal of Power Sources, 2002. 105(2): p. 297-304.
47. Mann, J., N. Yao, and A.B. Bocarsly, Characterization and Analysis of New Catalysts for a Direct Ethanol Fuel Cell†. Langmuir, 2006. 22(25): p. 10432-10436.
48. Shanmugam, S. and A. Gedanken, Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small, 2007. 3(7): p. 1189-93.
49. Liu, H., et al., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 2006. 155(2): p. 95-110.
50. Saha, M.S., R. Li, and X. Sun, Composite of Pt–Ru supported SnO2 nanowires grown on carbon paper for electrocatalytic oxidation of methanol. Electrochemistry Communications, 2007. 9(9): p. 2229-2234.
51. Matsui, T., et al., Effect of reduction–oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts. Science and Technology of Advanced Materials, 2006. 7(6): p. 524-530.
52. Shao, Y., G. Yin, and Y. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007. 171(2): p. 558-566.
53. Chhina, H., S. Campbell, and O. Kesler, An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. Journal of Power Sources, 2006. 161(2): p. 893-900.
54. Gustavsson, M., et al., Thin film Pt/TiO2 catalysts for the polymer electrolyte fuel cell. Journal of Power Sources, 2007. 163(2): p. 671-678.
55. Ekström, H., et al., Nanometer-thick films of titanium oxide acting as electrolyte in the polymer electrolyte fuel cell. Electrochimica Acta, 2007. 52(12): p. 4239-4245.
56. Hepel, M., et al., Novel dynamic effects in electrocatalysis of methanol oxidation on supported nanoporous TiO2 bimetallic nanocatalysts. Electrochimica Acta, 2007. 52(18): p. 5529-5547.
57. Park, K.-W. and K.-S. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2007. 9(9): p. 2256-2260.
58. Xiong, L. and A. Manthiram, Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel Cells. Electrochimica Acta, 2004. 49(24): p. 4163-4170.
59. Song, H., et al., Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochemistry Communications, 2007. 9(6): p. 1416-1421.
60. Chen, J.-M., et al., Multi-scale dispersion in fuel cell anode catalysts: Role of TiO2 towards achieving nanostructured materials. Journal of Power Sources, 2006. 159(1): p. 29-33.
61. Song, H., et al., TiO2 nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media. Journal of Power Sources, 2007. 170(1): p. 50-54.
62. Shanmugam, S., et al., Synthesis and Characterization of TiO2@C Core−Shell Composite Nanoparticles and Evaluation of Their Photocatalytic Activities. Chemistry of Materials, 2006. 18(9): p. 2275-2282.
63. Mentus, S., et al., Conducting carbonized polyaniline nanotubes. Nanotechnology, 2009. 20(24): p. 245601.
64. Shao, Y., et al., Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2008. 79(1): p. 89-99.
65. Matter, P.H., E. Wang, and U.S. Ozkan, Preparation of nanostructured nitrogen-containing carbon catalysts for the oxygen reduction reaction from SiO2- and MgO-supported metal particles. Journal of Catalysis, 2006. 243(2): p. 395-403.
66. Lu, A., et al., Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures. Chemistry of Materials, 2003. 16(1): p. 100-103.
67. Kruk, M., et al., Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. Microporous and Mesoporous Materials, 2007. 102(1–3): p. 178-187.
68. Matter, P.H., et al., Oxygen Reduction Reaction Catalysts Prepared from Acetonitrile Pyrolysis over Alumina-Supported Metal Particles. The Journal of Physical Chemistry B, 2006. 110(37): p. 18374-18384.
69. Lei, Z., et al., Nickel-Catalyzed Fabrication of SiO2, TiO2/Graphitized Carbon, and the Resultant Graphitized Carbon with Periodically Macroporous Structure. Chemistry of Materials, 2006. 19(3): p. 477-484.
70. Lei, Z., et al., Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 2009. 19(33): p. 5985-5995.
71. Jia, Y.F., B. Xiao, and K.M. Thomas, Adsorption of Metal Ions on Nitrogen Surface Functional Groups in Activated Carbons. Langmuir, 2001. 18(2): p. 470-478.
72. Oh, J.-G., C.-H. Lee, and H. Kim, Surface modified Pt/C as a methanol tolerant oxygen reduction catalyst for direct methanol fuel cells. Electrochemistry Communications, 2007. 9(10): p. 2629-2632.
73. Maiyalagan, T., B. Viswanathan, and U.V. Varadaraju, Nitrogen containing carbon nanotubes as supports for Pt – Alternate anodes for fuel cell applications. Electrochemistry Communications, 2005. 7(9): p. 905-912.
74. Aricò, A.S., et al., Effect of PtRu alloy composition on high-temperature methanol electro-oxidation. Electrochimica Acta, 2002. 47(22–23): p. 3723-3732.
75. Zhao, X., et al., Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction. Journal of Materials Chemistry, 2012. 22(37): p. 19718.