跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐梓益
Tiz-Yi Hsu
論文名稱: Cu/Mg比對Al-Cu-Mg-Ag合金熱穩定性之影響
指導教授: 李勝隆
Sheng-Long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 英文
論文頁數: 50
中文關鍵詞: 熱穩定性
外文關鍵詞: Al-Cu-Mg-Ag, thermal stability
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Al-Cu-Mg-Ag合金為一可熱處理型鋁合金,強化相Ω相及θ’相析出受Cu/Mg比影響。由於Ω相在鋁基地主要滑動面{111}α上析出,且Ω相具高溫穩定性,不僅可增加材料機械強度,亦使材料於高溫長時間下有好的熱穩定性。由於Al-Cu-Mg-Ag合金析出行為受Cu/Mg比影響,本研究探討不同Cu/Mg比對Al-Cu-Mg-Ag合金熱穩定性之影響。
    實驗設計四種Cu/Mg比(Mg含量)試片,分別為29(0.16wt.% Mg)、19(0.25 wt.% Mg)、8(0.56 wt.% Mg)、4(1.12 wt.% Mg)的Al-4.6Cu-Mg-0.6Ag(wt.%)合金,經T7熱處理後置於高溫107℃、135℃、155℃持溫1000小時後,以光學顯微鏡(OM)、電子微探儀(EPMA)、導電度(%IACS)、微差掃描熱分析(DSC)、掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)分析微結構變化,機械性質測試則進行拉伸試驗與硬度試驗,透過機械性質的分析,以了解Cu/Mg比對Al-Cu-Mg-Ag合金於高溫下之微結構上的差異,如何影響合金機械性質及熱穩定性。
    含1.12wt.%Mg的合金,因Mg含量過高,加工硬化現象極為明顯,造成擠型性不佳,極易於擠型時產生巨大的裂縫,故不對其進行熱穩定性研究。
    由DSC及TEM分析可知,合金於T7熱處理後,隨著Mg含量的增加(Cu/Mg比降低),Ω相析出量增加且漸為主要強化相;由熱穩定性的硬度曲線可知,硬度曲線的下降幅度,隨Mg含量的增加(Cu/Mg比降低)而趨緩,由此可知,合金中Ω相愈多,於高溫長時間時效的熱穩定性愈好。


    總目錄 謝誌………………………………………………………………………I 摘要……………………………………………………………………II 總目錄…………………………………………………………………III 圖目錄…………………………………………………………………V 表目錄…………………………………………………………………VII 壹、前言…………………………………………………………………1 一﹑Al-Cu-Mg-Ag合金簡介………………………………………1 二﹑Al-Cu-Mg-Ag合金之熱處理與析出強化作用………………2 三﹑Cu/Mg比對Al-Cu-Mg-Ag合金析出相影響…………………4 四﹑Al-Cu-Mg-Ag合金機械性質及熱穩定性簡介………………5 貳、實驗方法與步驟……………………………………………………7 一﹑鑄造、擠製與熱處理……………………………………………8 1. 合金配置及成份分析………………………………………8 2. 擠製…………………………………………………………8 3. 熱處理………………………………………………………9 二﹑微結構觀察……………………………………………………9 1. 金相觀察及EPMA………………………………………9 2. 導電度量測……………………………………………10 3. 掃描式電子顯微鏡觀察(SEM)…………………………10 4. 微分掃描熱分析(DSC)…………………………………10 5. 穿透式電子顯微鏡觀察(TEM)……………………………11 三﹑機械性質分析…………………………………………………11 1. 硬度試驗…………………………………………………11 2. 拉伸試驗…………………………………………………11 參、結果與討論…………………………………………………………12 一﹑微結構分析……………………………………………………12 1. 金相觀察…………………………………………………12 2. 導電度量測………………………………………………17 3. 微分掃瞄熱分析(DSC)…………………………………20 4. TEM分析…………………………………………………27 二﹑機械性質分析………………………………………………38 1. 拉伸試驗…………………………………………………38 2. 硬度試驗…………………………………………………40 3. 熱穩定性試驗……………………………………………41 肆、結論………………………………………………………………44 伍、參考資料…………………………………………………………46 圖目錄 圖2.1 實驗流程表……………………………………………………7 圖2.2 圓形拉伸試棒規格(單位:mm)………………………………11 圖3.1 四種合金鑄造狀態之金相圖…………………………………13 圖3.2 四種合金均質化後之金相圖………………………………14 圖3.3 四種合金擠製後之金相圖…………………………………15 圖3.4 三種合金固溶後之金相圖……………………………………16 圖3.5 三種合金之固溶淬火、自然時效一天、 T7熱處理後之DSC…………………………………………22 圖3.6 A合金在T7,及T7後200hr、400hr、 600hr、800hr、1000hr之DSC圖……………………………24 圖3.7 B合金在T7,及T7後200hr、400hr、 600hr、800hr、1000hr之DSC圖……………………………25 圖3.8 C合金在T7,及T7後200hr、400hr、 600hr、800hr、1000hr之DSC圖……………………………26 圖3.9 Al-Cu-Mg-Ag合金於T7熱處理後, zone axis =〈011〉之繞射點…………………………………30 圖3.10 三種合金T7熱處理後之TEM微結構, zone axis=〈011〉之TEM影像圖…………………………31 圖3.11 A合金T7熱處理及T7熱處理後 高溫長時間時效1000小時, 於zone axis=〈011〉之TEM繞射點………………………32 圖3.12 A合金T7熱處理及T7熱處理後 高溫長時間時效1000小時之TEM微結構, zone axis=〈011〉之TEM影像圖…………………………33 圖3.13 B合金T7熱處理及T7熱處理後 高溫長時間時效1000小時, 於zone axis=〈011〉之TEM繞射點………………………34 圖3.14 B合金T7熱處理及T7熱處理後 高溫長時間時效1000小時之TEM微結構, zone axis=〈011〉之TEM影像圖…………………………35 圖3.15 C合金T7熱處理及T7熱處理後 高溫長時間時效1000小時, 於zone axis=〈011〉之TEM繞射點………………………36 圖3.16 C合金T7熱處理及T7熱處理後 高溫長時間時效1000小時之TEM微結構, zone axis=〈011〉之TEM影像圖…………………………37 圖3.17 A、B、C合金T7熱處理後之拉伸破斷面……………………39 圖3.18 A、B、C合金T7熱處理後,至於107℃(▲)、 135℃(●)、155℃(■)持溫1000小時 之硬度曲線,期間每100小時量測一次……………………41 表目錄 表1.1 Al-Cu-Mg及Al-Cu-Mg-Ag合金 析出物隨Cu/Mg改變…………………………………………5 表2.1 本實驗所溶配之Al-Cu-Mg-Ag合金成份…………………8 表3.1 A、B、C合金於鑄態、固溶淬火、 自然時效一天及T7熱處理後之導電度(%IACS)……………18 表3.2 A、B、C合金T7熱處理後於高溫持溫至 1000小時之導電度,期間每200小時做一次量測…………19 表3.3 合金A、B、C於107℃、135℃和155℃ 持溫1000小時之導電度(%IACS)……………………………20 表3.4 合金A、B、C於固溶淬火、自然時效一天 及T7熱處理後之析出熱量…………………………………23 表3.5 合金A、B、C於107℃、135℃和155℃ 持溫1000小時之析出熱量…………………………………23 表3.6 A、B、C合金T7熱處理後置於高溫 持溫1000小時後,析出物之變化……………………………28 表3.7 A、B、C合金經T7熱處理之拉伸性質………………………38 表3.8 A、B、C合金經不同熱處理之硬度……………………………39 表3.9 A、B、C合金經T7熱處理及T7熱處理後 置於高溫100小時和1000小時之硬度……………………41

    1.J.E. Hatch, “Aluminum:Properties and Physical Metallurgy”, ASM, 1984, metal park, Ohio
    2.I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge and S. Rogers, “After Concorde : Evaluation of Creep Resistant Al-Cu-Mg-Ag Alloys” , Materials Science and Technology, Vol.15, pp.861-868, 1999
    3.G. LAPASSAT, H. OCUOR, C. SANCHEZ, Y. BARBAUX, and G. PONS, “4th int. Conf. On ‘Aluminium alloy’, (ed. T. H. Sanders and E. A. Starke, Jr), Vol.2, pp.72-79, 1994, Atlanta, Georgia Institute of Technology
    4.I. J. Polmear and M. J. Couper, “Design and Development of an Experiment Wrought Aluminum Alloy for Use at Elevated Temperature” , Metallurgical Transactions A, Vol.19A, pp.1027-1035, 1988
    5.R. J. Chester and I. J. Polmear, “TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys” , , Vol.11, pp.311-312, 1980
    6.A. K. Mukhopadhyay, “Nucleation of Ω Phase in an Al-Cu-Mg Alloy Containing Small Additions of Ag” , Materials Transactions, JIM, Vol.38, No.5, pp.478-482, 1997
    7.B. C. Muddle and I. J. Polmear, “The Precipitate Ω Phase in Al-Cu-Mg-Ag Alloys” , Acta Metall., Vol.37, No.3, pp.777-789, 1989
    8.L. M. Wang, H. M. Flower and T. C. Lindley, “Precipitation of the Ω Phase in 2024 and 2124 Aluminium Alloys” , Scripta Materiala, Vol.41, No.4, pp.391-396, 1999
    9.J. H. Auld, Acta Cryst, A28, S98, 1972
    10.S. Kerry and V. D. Scott, Metals. Sci., Vol.18, pp.289-294, 1984
    11.J. H. Auld, Mater. Sci. Technol., Vol.2, pp.784-787, 1986
    12.K. M. Knowles and W. M. Stobbs, “The Structure of {111} Age-Hardening Precipitates in Al-Cu-Mg-Ag Alloys” , Acta Cryst., B44, pp.207-227, 1988
    13.A. Garg and J. M. Howe, “Convergent-Bean Electron Diffraction Analysis of the Ω Phase in an Al-4.0Cu-0.5Mg-0.5Ag Alloy” , Acta Metall. Mater., Vol.39, No.8, pp.1939-1946, 1991
    14.A. Garg, Y. C. Chang and J. M. Howe, “Precipitation of the Ω Phase in an Al-4.0Cu-0.5Mg Alloy” , Scripta Metallurgica et Materialia, Vol.24, pp.677-680, 1990
    15.S. P. Ringer, K. Hono , I. J. Polmear and T. Sakurai, ”Nucleation of Precipitates in Aged Al-Cu-Mg-(Ag) Alloys with High Cu:Mg Ratios” , Acta Mater., Vol.44, No.5, pp.1883-1898, 1996
    16.K. Hono, T. Sakurai and I. J. Polmear, “Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy” , Scripta Metallurgica et Materialia, Vol.30, No.6, pp.695-700, 1994
    17.L. Reich, M. Murayama and K. Hono, “Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy–A Three-Dimensional Atom Probe Study” , Acta Mater., Vol.46, No.17, pp.6053-6062, 1998
    18.ASTM B597-83
    19.K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys” , Acta Metall. Mater., Vol.41, No.3, pp.829-838, 1993
    20.Robert E. Read-Hill, “Physical Metallurgy Principles”, PWS Publishing company, 3rd ed. ,pp523-525, 1992
    21.張志鴻, “銀含量對於A201鑄造鋁合金Ω相析出影響”, 國立中央大學機械工程研究所碩士論文, 2000
    22.S. P. Ringer, T. Sakurai and I. J. Polmear, “Origins of Hardening in Aged Al-Cu-Mg-(Ag) Alloys” , Acta Mater., Vol.45, No.9, pp.3731-3744, 1997
    23.O. Beffort, C. Solenthaler. P. J. Uggowitzer and M. O. Speidel, “High toughness and high strength spray-deposited AlCuMgAg-base alloys for use at moderately elevated temperatures” , Materials Science and Engineering A191, pp.121-134, 1995
    24.S. P. Ringer, W. Yeung, B. C. Muddle and I. J. Polmear, “Precipitate Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperature” , Acta Metall. Mater., Vol.42, No.5, pp.1715-1725, 1994
    25.Qiong Li* and R. N. Shenoy, “DSC and TEM characterization of thermal stability of an Al-Cu-Mg-Ag Alloy” , Journal of Materials Science, Vol.32, pp.3401-3406, 1997
    26.ASTM B557M-84
    27.ASTM E602-81
    28.R. J. Chester and I. J. Polmear:7th Int. Light Metals Congr., Aluminum-Verlag, Leoben/Vienna, pp.58-59, 1981
    29.J. M. Papazian:Metall. Trans. A, vol.12A, pp.269-280, 1981
    30.A. K. Mukhopadhyay, “On the Nature of the Second Phase Particles Present in an As-Cast Al-Cu-Mg-Ag Alloy” , Scripta Materiala, Vol.41, No.6, pp.667-672, 1999
    31.A. K. Mukhopadhyay, “Compositional Characterization of Cu-Rich Phase Particles Present in As-Cast Al-Cu-Mg(-Li) Alloys Containing Ag” , Metallurgical and Materials Transactions A,Vol.30A, pp.1693-1704, 1999

    QR CODE
    :::