跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李福壽
Fu-Shou Li
論文名稱: OFET材料:電子豐盈暨缺電子芳香環共組成化合物
OFET material:molecules with both electron-rich and electron-deficient aromatic
指導教授: 林建村
Jiann T. Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 缺電子電子豐盈OFET
外文關鍵詞: electron-deficient, electron-rich, OFET
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用電子豐盈芳香環與缺電子芳香環彼此之相互作用力,將有利於分子堆疊,以期能強化電荷之傳導。所採用之電子豐盈芳香環包括thieno[3,2-b]thiophene、dithieno[3,2-b:2′,3′-a]thiophene、anthracene單元,缺電子芳香環則包括imidzole[1,2-a]pyrimidine、thaizole單元。藉由X-射線繞射儀的分析所合成出系列的化合物,可以得知含有thaizole化合物的結晶度明顯的比imidzole[1,2-a]- pyrimidine化合物好。其中含anthracene與thaizole之化合物DH(SN)2Ant並製成有機場效電晶體元件,化合物經由蒸鍍,沈積於表面經過OTS (octadecyltrichlorosilane)處理之Si基板後,在室溫下可測得電洞移動速率為1.8×10-3 cm2V-1s-1;將基板溫度加熱至60 ℃時,則電洞移動速率將會下降至2.8×10-4 cm2V-1s-1。我們並利用原子力顯微鏡所觀測的影像來瞭解薄膜形態與電洞移動速率之間的關聯。


    We strategically design molecules with both electron-rich and electron-deficient aromatic segments because the favorable electronic interaction between them is expected to facilitate π—π interaction and lead to better carrier transport. The electron-rich moieties used include thieno[3,2-b]thiophene, dithieno[3,2-b:2′,3′-a]thiophene, and anthracene, while imidzole[1,2-a]pyrimidine, and thaizole are used as the electron-deficient moieties. Power X-ray diffraction studies on the series of compounds synthesized indicate that thiazole-containing compounds exhibit better crystallinity than imidzole[1,2-a]- pyrimidine-containing compounds. One of the compound composed of anthracene and thaizole, DH(SN)2Ant, was fabricated into OFET device via vacuum deposition on the SiO2 substrate which was pre-treated with OTS (octadecyltrichlorosilane). The hole mobility measured in was calculated to be 1.8×10-3 cm2V-1s-1 for the organic film deposited at room temperature. However, the mobility decreased to 2.8×10-4 cm2V-1s-1 when temperature of the substrate was raised to 60 ℃ during deposition. Atomic force microscopy was used to analyze the deposited film in order to correlate the morphology of the film with the charge mobility.

    中文摘要------------------------------------------------------------------- I 英文摘要------------------------------------------------------------------- II 謝誌------------------------------------------------------------------------- III 目錄------------------------------------------------------------------------- IV 圖目錄---------------------------------------------------------------------- VI 表目錄---------------------------------------------------------------------- XI 附圖目錄------------------------------------------------------------------- XII 第一章 緒論--------------------------------------------------------------- 1 1.1 前言----------------------------------------------------------- 1 1.2 有機場效電晶體(OFET)的介紹與其基本操作原理- 3 1.3 有機半導體------------------------------------------------- 10 1.4 影響有機場效電晶體效能的因素---------------------- 19 1.5 研究動機----------------------------------------------------- 26 第二章 實驗部分--------------------------------------------------------- 28 2.1 實驗儀器----------------------------------------------------- 28 2-2 實驗藥品---------------------------------------------------- 31 2.3 合成流程----------------------------------------------------- 33 第三章 結果與討論------------------------------------------------------ 61 3.1 合成之探討------------------------------------------------- 61 3.2 熱分析-------------------------------------------------------- 64 3.3 光物理分析------------------------------------------------- 71 3.4 電化學-------------------------------------------------------- 74 3.5 X-ray晶體的探討------------------------------------------- 75 3.6 元件試製----------------------------------------------------- 82 3.7 有機場效電晶體元件------------------------------------- 86 第四章 結論--------------------------------------------------------------- 92 參考文獻------------------------------------------------------------------- 93 附錄------------------------------------------------------------------------- 97

    1. Y. Chen; J. Au; P. Kazlas; A. Ritenour; H. Gates; M. McCreary, Nature 2003, 423, 136.
    2. J. Zaumseil; H. Sirringhaus, Chem. Rev. 2007, 107, 1296?1323.
    3. J. A. Rogers; Z. Bao; A. Makhija; P. Braun, Adv. Mater. 1999, 11, 741.
    4. E. Kim; Y. Xia; X.-M. Zhao; G. M. Whitesides, Adv. Mater. 1997, 9, 651.
    5. G. Horowitz, Adv. Mater. 1998, 10, 365.
    6. A. Facchetti, Materials Today 2007, 10, 28.
    7. G. R Dholakia; M. Meyyappan; A. Facchetti; T. J. Marks, Nano Lett. 2006, 6, 11.
    8. H. Katz; Z. Bao; S. Gilat, Adv. Mater. 2002, 14, 99.
    9. G. Horowitz; X. Peng; D. Fichou; F. Ganrnier, Synth. Met. 1992, 51, 419.
    10. R. C. Haddon; A. S. Perel; R. C. Morris; T. T. M- Palsta; A. F. Hebard; R. M. Fleming, J. Appl. Phys. 1995, 67, 121.
    11. J.H. Schön; Ch. Kloc, B. Batlogg, Org. Electron. 2000, 1, 57.
    12. S. Lee; B. Koo; J. Shin; E. Lee; H. Park, Appl. Phys. Lett. 2006, 88, 162109.
    13. A. Afzali; C. D. Dimitrakopoulos; T. L. Breen, J. Am. Chem. Soc. 2002, 124, 8812.
    14. V. C. Sundar; J. Zaumseil; V. Podzorov; E. Menard; R. L. Willett; T. Someya; M. E. Gershenson; J. A. Rogers, Science 2004, 303, 1644.
    15. J. G. Laquindanum; H. Katz; A. Dodabalapur; A. J. Lovinger, J. Am. Chem. Soc. 1996, 118, 11331.
    16. S. Kobayashi; T. Takenobu; S. Mori; A. Fujiwara; Y. Iwasa, Appl. Phys. Lett. 2003, 82, 4581.
    17. C. Waldauf; P. Schilinsky; M. Perisutti; J. Hauch; C. J. Brabec, Adv. Mater. 2003, 15, 2084.
    18. M. Chikamatsu; S. Nagamatsu; Y. Yoshida; K. Saito; K. Yase; K. Kikuchi, Appl. Phys. Lett. 2005, 87, 203504.
    19. B. A. Jones; M. J. Ahrens; M.-H. Yoon; A. Facchetti; T. J. Marks; M. R. Wasielewski, Angew. Chem., Int. Ed. 2004, 43, 6363.
    20. A. Dodabalapur; H. E. Katz; L. Torsi; R. C. Haddon, Science 1995, 269, 1560.
    21. H. Wang; J. Wang; X. Yan; J. Shi; H. Tian; Y. Geng; D. Yan, Appl. Phys. Lett. 2006, 88, 133508.
    22. J. Shi; H. Wang; D. Song; H. Tian; Y. Geng; D. Yan, Adv. Funct. Mater. 2007, 17, 397.
    23. R. J. Chesterfield; C. R. Newman; T. M. Pappenfus; P. C. Ewbank; M. H. Haukaas; K. R. Mann; L. L. Miller; C. D. Frisbie, Adv. Mater. 2003, 15, 1278.
    24. T. D. Anthopoulos; G. C. Anyfantis; G. C. Papavassiliou; D. M. de Leeuw, Appl. Phys. Lett. 2007, 90, 122105.
    25. M. L. Tang; A. D. Reichardt; N. Miyaki; R. M. Stoltenberg; Z. Bao, J. Am. Chem. Soc. 2008, 130, 6064.
    26. Y. Sun; Y. Liu; D. Zhu, J. Mater. Chem. 2005, 15, 53.
    27. M.-C. Um; J. Jang; J. Kang; J.-P. Hong; D. Y. Yoon; S. H. Lee; J.-J. Kim; J.-I. Hong, J. Mater. Chem. 2008, 18, 2234.
    28. M. M. Payne; S. R. Parkin; J. E. Anthony; C.-C. Kuo; T. N. Jackson, J. Am. Chem. Soc. 2005, 127, 4986.
    29. I. Doi; E. Miyazaki; K. Takimiya; Y. Kunugi, Chem. Mater. 2007, 19, 5230.
    30. K. Xiao; Y. Liu; T. Qi; W. Zhang; F. Wang; J. Gao; W. Qiu; Y. Ma; G. Cui; S. Chen; X. Zhan; G. Yu; J. Qin; W. Hu; D. Zhu, J. Am. Chem. Soc. 2005, 127, 13281.
    31. J. H. Oh; S. Liu; Z. Bao; R. Schmidt; F. Würthner, Appl. Phys. Lett. 2007, 91, 212107.
    32. Q. Miao; M. Lefenfeld; T.-Q. Nguyen; T. Siegrist; C. Kloc; C. Nuckolls, Adv. Mater. 2005, 17, 407.
    33. Y.-C. Chang; Y.-D. Chen; C.-H. Chen; Y.-S. Wen; J. T. Lin; H.-Y. Chen; M.-Y. Kuo; I. Chao, J. Org. Chem 2008, 73, 4608.
    34. S. Ando; J.-I. Nishida; H. Tada; Y. Inoue; S. Tokito; Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 5336.
    35. S. Ando; R. Murakami; J.-I. Nishida; H. Tada; Y. Inoue; S. Tokito; Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 14996.
    36. L. S. Fuller; B. Iddon; K. A. Smith, J. Chem. Soc., Perkin Trans. 1, 1997, 3465.
    37. J. Frey; S. Proemmel; M. A. Armitage; A. B. Holmes, org. synth. 2006, 83, 209.
    38. K. Ito; T. Suzuki; Y. Sakamoto; D. Kubota; Y. Inoue; F. Sato; S. Tokito, Angew. Chem., Int. Ed. 2003, 115, 1191.
    39. T. R. Criswell; B. H. Klanderman, J. Org. Chem. 1974, 39, 770.
    40. J. Hassan; L. Lavenot; C. Gozzi; M. Lemaire, Tetrahedron Lett. 1999, 40, 857.
    41. T. Bach; S. Heuser, J. Org. Chem. 2002, 67, 5789.
    42. F. Valiyev; W.-S. Hu; H.-Y. Chen; M.-Y. Kuo; I. Chao; Y.-T. Tao, Chem. Mater. 2007, 19, 3018.

    QR CODE
    :::