| 研究生: |
王政皓 Zheng-Hao Wang |
|---|---|
| 論文名稱: |
不同粒徑微多孔表面在狹小空間內之池沸騰熱傳性能研究 |
| 指導教授: |
楊建裕
Chien-Yuh Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 微多孔表面 、粒徑大小 、狹小空間 、池沸騰 |
| 外文關鍵詞: | Micro porous surface, Particle size, Confined space, Pool boiling |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用兩種不同粒徑大小(3.6 μm and 20 μm)的鋁粉分別製作厚度(80、105和150 μm)的微多孔表面,以甲醇為工作流體在垂直加熱面上分別進行開放空間與狹小空間(1mm)的池沸騰熱傳性能實驗。不同粒徑大小其堆疊孔洞大小也不同,活化所需過熱度與生成汽泡大小也會跟著受到影響。研究結果發現在低熱通量時,小粒徑微多孔表面因所需活化過熱度高因此熱傳性能比大粒徑微多孔表面差。隨著熱通量增加,小粒徑微多孔表面活化孔洞的數量增加,其熱傳性能會逐漸接近大粒徑微多孔表面,在高熱通量時甚至會比大粒徑微多孔表面還要好。
在狹小空間內時,聚合汽泡會佔據狹小空間,液體較難補充至加熱表面造成熱傳性能提升效果減弱。而小粒徑微多孔表面生成的氣泡大小比大粒徑微多孔表面生成的氣泡小,因此汽泡聚合的大小也小,在相同狹小空間下,液體補充所受影響也較小。小粒徑微多孔表面其毛細吸力比大粒徑微多孔表面強,而研究結果發現厚度較大的微多孔表面在狹小空間高熱通量時,小粒徑微多孔表面其熱傳性能會比開放空間時還要好,而大粒徑微多孔表面生成汽泡受到空間限制,其熱傳性能反而比開放空間時差。
This study used two aluminum particle sizes (3.6 μm and 20 μm) to production the same thickness(80,105 and 150 μm) micro porous surface , with methanol as the working fluid, the pool boiling heat transfer experiments is heated in a vertical surface. Respectively, open space and a small space (1mm) at 1 atm. Different particle sizes change the cavities sizes, the superheat required for the activation of the bubble size and generation will follow affected. The results showed that in the low heat flux, the small particle size of the micro porous surfaces required high superheating for activation the cavities. Therefore, its heat transfer performance is poor than large particle size micro porous surface. With heat flux increases, the number of active cavities increases, the heat transfer performance will be close to the large particle size micro porous surface gradually, even better at high heat flux.
In confined space, when coalesced bubbles occupy the small space long, liquid supplement hard to the heating surface. It caused the heat transfer performance reduced. And the small particle size micro porous surface generate the small size of bubbles, so the coalesced bubble size is small, in the same confined space, refilling the impact is small. Will lead to a liquid supplement to a small space, the capillary suction of small particle size micro porous surface is stronger than the large particle size micro porous surface. While the study found that the small particle size micro porous surface heat flux in the narrow space, the heat transfer performance is better than the open space.
Azar, K., 2002, “Advanced Cooling Concepts and Their Challenges,” The 8th International Workshop on THERMal INvestigations of ICs and Systems (Therminic), October 1-4, 2002, Madrid, Spain.
Alam, M. S., Prasad, L., Gupta, S. C., and Agarwal, V. K., 2008, “Enhanced boiling of saturated water on copper coated heating tubes,” Chem. Eng. Process., Vol. 47, pp. 159-167.
Bonjour, J., and Lallemand, M., 1998, “Flow patterns during boiling in a narrow space between two vertical surfaces,” Int. J. Multiphase Flow, Vol. 24, pp. 947-960.
Chang, J. Y., and You, S. M., 1996, “Heater orientation effects on pool boiling of micro-porous-enhanced surfaces in saturated FC-72,” ASME J. Heat Transfer, Vol. 118, pp. 937–943.
Chang, J. Y., and You, S. M., 1997a, “Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72,” Int. J. Heat Mass Transfer, Vol. 40, pp. 4437-4447.
Chang, J. Y., and You, S.M., 1997b, “Enhanced boiling heat transfer from micro-porous surfaces: effects of a coating composition and method,” Int. J. Heat Mass Transfer. Vol. 40, pp. 4449–4460.
Collier, J. G., and Thome, J. R., 1994, Convective Boiling and Condensation, Third Edition. Oxford University Press New York. Chapter 4, pp. 148-151.
El-Genk, M. S., and Ali, A. F., 2010, “Enhanced nucleate boiling on copper micro-porous surfaces,” Int. J. Multiphase Flow, Vol. 36, pp. 780-792.
Fujita, Y., Ohta, H., Uchida, S., and Nishikawa, K., 1988, “Nucleate boiling heat transfer and critical heat flux in narrow space between rectangular surfaces,” Int. J. Heat Mass Transfer, Vol. 31, pp. 229-239.
Ishibashi, E., and Nishikawa, K., 1969, “Saturated boiling heat transfer in narrow spaces,” Int. J. Heat Mass Transfer, Vol. 12, pp. 863-893.
Katto, Y., Yokoya, S., and Teraoka, K., 1977, “Nucleate and transition boiling in a narrow space between two horizontal, parallel disk-surfaces,” Bull. JSME., Vol. 20, pp. 638-643.
Lee, M. T., Yang, Y. M., and Maa, J. R., 1992, “Nucleate pool boiling in a confined space,” Chem. Eng. Comm., Vol. 117, pp. 205-217.
Lee, M. T., Yang, Y. M., and Maa, J. R., 1995, “Boiling of mixture in a narrow space,” Chem. Eng. Comm., Vol. 134, pp. 183-194.
Li, C., and Peterson, G. P., 2007, “Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces” ASME J. Heat Transfer, Vol. 129, pp. 1465-1475.
Li, C., and Peterson, G. P., 2010, “Geometric effects on critical heat flux on horizontal microporous coatings,” J. Thermophys Heat Transfer, Vol. 24, pp. 449-455
Misale, M., Guglielmini, G., and Priarone, A., 2009, “HFE-7100 pool boiling heat transfer and critical heat flux in inclined narrow spaces,” Int. J. Refrig., Vol. 32, pp. 235-245.
Misale, M., Guglielmini, G., and Priarone, A., 2011, “Nucleate boiling and critical heat flux of HFE-7100 in horizontal narrow spaces,” Exp. Therm. Fluid Sci., Vol. 35, pp. 772-779.
Nowell, R. M., Bhavnani, S. H., and Jaeger, R. C., 1995 “Effect of Channel Width on Pool Boiling from a Microconfigured Heat Sink,” IEEE Trans. Compon. Pack. Technol., Vol. 18, pp. 534-539.
O’Connor, J. P., and You, S. M., 1995 “A painting technique to enhance pool boiling heat transfer in FC-72,” ASME J. Heat Transfer, Vol. 117, pp. 387-393.
O’Connor, J. P., You, S. M., and Price, D. C., 1995, “A dielectric surface coating technique to enhance boiling heat transfer from high power microelectronics,” IEEE Trans. Compon. Pack. Technol., Vol. 18, pp. 656-663.
Stephan, K., and Abdelsalam, M., 1980, “Heat-transfer correlations for natural convection boiling,” Int. J. Heat and Mass Transfer, Vol. 23, pp. 73-87.
Sun, Y., Zhang, L., Xu, H., Zhong, X., 2011, ‘‘Subcooled flow boiling heat transfer from microporous surfaces in a small channel,” Int. J. Thermal Sciences, Vol. 50, pp. 881-889.
Yang J., 2005, ‘‘Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel,’’ Ph. D thesis, Department of Mechanical Engineering, Pennsylvania State University, USA.
Yang, J., and Cheung, F.-B., 2005, “A hydrodynamic CHF model for downward facing boiling on a coated vessel,” Int. J. Heat Fluid Flow, Vol. 26, pp. 474-484.
Yao, S.-C., and Chang, Y., 1983, “Pool boiling heat transfer in a confined space,” Int. J. Heat Mass Transfer, Vol. 26, pp. 841-847.
Yang, C.-Y., and Liu, C.-F., 2013, “Effect of Coating Layer Thickness for Boiling Heat Transfer on Micro Porous Coated Surface in Confined and Unconfined Spaces,” Exp. Therm. Fluid Sci., Vol. 47 pp. 40-47.
Zhao, Y., Tsuruta, T., and Ji, C., 2003, “Experimental study of nucleate boiling heat transfer enhancement in confined space,” Exp. Therm. Fluid Sci., Vol. 28, pp. 9-16.
范智峰,2004,冷媒R-134a與R-404A在熱傳增強管上之池沸騰觀察與熱傳性能分析,國立中央大學機械工程研究所博士論文,中壢,台灣。
劉建富,2013,狹小空間內微多孔表面之蒸發熱傳性能研究,國立中央大學機械工程研究所博士論文,中壢,台灣。