跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭晉誠
Chin-Cheng Kuo
論文名稱: 建立考慮電源雜訊之鎖相迴路行為模型
Supply Noise Aware Behavioral Modelingfor Phase-Locked Loop Circuits
指導教授: 劉建男
Chien-Nan Jimmy Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 93
語文別: 英文
論文頁數: 59
中文關鍵詞: 鎖相迴路電源雜訊行為模型
外文關鍵詞: behavioral model, supply noise, phase-locked loop
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術的進步,元件尺寸越來越小。在這樣的單晶片設計(SoC)的潮流之下,面對整合數百萬個邏輯閘個數在單一晶片裡,傳統的電路設計技巧不再適用,必須改變設計方法來解決電路整合的問題。單晶片的時代裡,混合訊號(mixed-signal)系統設計的挑戰主要可以分成一起模擬(co-simulation)以及雜訊交互影響(noise interaction)兩個問題。對於現代的大電路設計來說,整合在佈局階層以及低階層的佈局後(post-layout)一起模擬(co-simulation)變的幾乎不可行。此外,隨著電源電壓的越來越小,以及電路的操作速度越來越快,電源的變動將會主宰整個系統的效能,因此這種效應不應該再被忽略。
    在這篇論文裡面,我們以鎖相迴路(phase-locked loop)為例子,提出了考慮電源雜訊(supply noise aware)的類比電路行為模型(behavioral model),期望可以用這樣的行為模型來評估、解決上述的兩個整合的問題。在我們的方法中,我們提出了一個由下往上(bottom-up)的萃取流程(extraction flow),用很
    短的時間來獲得鎖相迴路行為模型所需的電路特徵參數。然後,我們修正這些參數,使的即使在不同電源電壓的情況下,我們的方法只需要跑三次佈局後的模
    擬,就能建立精準地反應電源雜訊的行為模型。
    在實驗結果裡面,我們可以很明顯的看出,對於電源雜訊的效應來說,我們的方法不需要耗時的相關分析,就能有很精準的輸出響應(responses)。


    With the process technology innovating rapidly, the device size is continuing to
    scaling down. In the trend of SoC designs, traditional design techniques must be modified to solve the integration problems with over million gate counts in a single chip. In SoC era, the major design challenges are the issues of co-simulation speed and noise interactions in a mixed-signal system. Integration at layout level and running the low level post-layout simulation become almost infeasible for the modern large designs. Moreover, the supply voltage fluctuations cannot be ignored any more
    and these effects will dominate the system performances with faster switching frequency and smaller supply voltage.
    In this thesis, we propose the supply noise aware behavioral models for analog circuits, such phase-locked loop circuits, in order to estimate and handle these two integration issues. We present a bottom-up extraction flow to extract the characteristic parameters for PLL behavioral models in a short time. Then, we adjust these parameters for considering the supply noise effects such that only three post-layout simulations are enough to generate accurate behavioral models under various supply
    voltages.
    The experimental results have shown that this approach can really have accurate output responses under different supply voltages without time-consuming correlation analysis.

    Chapter 1 Introduction.......................................................... 1 1.1 Motivation .....................................................................................1 1.1.1 Co-simulation Issues..............................................................................3 1.1.2 Supply Noise Issues ...............................................................................6 1.2 Thesis Organization ......................................................................9 Chapter 2 Bottom-Up Extraction Approach ....................... 10 2.1 Previous Approach ......................................................................10 2.2 Bottom-up Extraction Approach .................................................11 2.3 PLL Modeling Concerns .............................................................12 2.3.1 Phase Frequency Detector....................................................................13 2.3.2 Charge Pump........................................................................................14 2.3.3 Loop Filter ...........................................................................................15 2.3.4 Voltage Control Oscillator ...................................................................16 2.3.5 Frequency Divider ...............................................................................17 2.4 Characterization Mode................................................................17 2.5 Modeling Process........................................................................19 2.5.1 PFD & Divider.....................................................................................20 2.5.2 CP & LF...............................................................................................21 2.5.3 VCO.....................................................................................................26 2.6 Summary .....................................................................................28 Chapter 3 Noise Aware Models .......................................... 29 3.1 Previous Approach......................................................................29 3.2 Modeling the Effects of Supply Noise........................................32 3.3 Summary .....................................................................................37 Chapter 4 Experimental Results ......................................... 38 Chapter 5 Conclusions........................................................ 46 Reference .................................................................................. 47

    [1] Open Verilog International, “Verilog-AMS Language Reference Manual 2.1”, January 2003.
    [2] IEEE Standard VHDL Analog and Mixed-Signal Extensions (IEEE Standard 1076.1-1999), December, 1999.
    [3] Manganaro, G.; Sung Ung Kwak; SeongHwan Cho; Pulincherry, A.; “A
    behavioral modeling approach to the design of a low jitter clock source” , IEEE
    Trans. on Circuits and Systems II: Express Briefs, Nov. 2003.
    [4] Hinz, M.; Konenkamp, I.; Horneber, E.-H.; “Behavioral modeling and simulation
    of phase-locked loops for RF front ends”, Proc. of the 43rd IEEE Midwest
    Symposium, pp. 194-197, Aug. 2000.
    [5] Karray, M.; Seon, J.K.; Charlot, J.-J.; Nasmoudi, N.; “VHDL-AMS modeling of
    a new PLL with an inverse sine phase detector”, Behavioral Modeling and
    Simulation, pp. 80-83, Oct. 2002.
    [6] I. Martinez, P. Delatte and D. Flandre, “Characterization, simulation and
    modeling of PLL under irradiation using HDL-A”, Proceedings of the
    IEEE/ACM International Workshop on Behavioral Modeling and Simulation, pp.
    57-61, Oct. 2000.
    [7] K.W. Current, J.F. Parker and W.J. Hardaker, “On behavioral modeling of
    analog and mixed-signal circuits”, Conference Record of the Twenty-Eighth
    Asilomar Conference on Signals, Systems and Computers, Oct. 1994.
    [8] T. Murayama and Y. Gendai, “A top-down mixed-signal design methodology
    using a mixed-signal simulator and analog HDL,” Design Automation
    Conference with EURO-VHDL, pp. 59-64, Sept. 1996.
    [9] B. De Smedt and G..Gielen, “Models for Systematic Design and Verification of
    Frequency Synthesizers,” IEEE Transactions on Circuits and Systems II: Analog
    and Digital Signal Processing, pp. 1301–1308 , Oct. 1999.
    [10] A. Demir, E. Liu, A.L. Sangiovanni-Vincentelli, and I. Vassiliou, “Behavioral
    simulation techniques for phase/delay-locked systems” Custom Integrated
    Circuits Conference, pp. 453–456, May 1994.
    [11] A. Mounir; A. Mostafa; M. Fikry; “Automatic Behavioural Model Calibration
    for Efficient PLL System Verification”, Design, Automation and Test in Europe
    Conference and Exhibition, pp. 280-285, 2003.
    [12] Muzhou Shao; Youxin Gao; Li-Pen Yuan; Wong, M.D.F.; “IR Drop and Ground
    Bounce Awareness Timing Model”, IEEE Computer Society Annual Symposium,
    May 2005.
    [13] Kobayashi, K.; Yamaguchi, J.; Onodera, H.; “Measurement results of on-chip
    IR-drop”, Custom Integrated Circuits Conference, May 2002.
    [14] Yungseon Eo; Eisenstadt, W.R.; Ju Young Jeong; Oh-Kyong Kwon; “New
    simultaneous switching noise analysis and modeling for high-speed and
    high-density CMOS IC package design”, IEEE Transactions on Components,
    Packaging and Manufacturing Technology, May 2000.
    [15] Xiaojian Mao; Huazhong Yang; Hui Wang; “Behavioral modeling and
    simulation of jitter and phase noise in fractional-N PLL frequency synthesizer”,
    Proceedings of the 2002 IEEE International Workshop on Behavioral Modeling
    and Simulation, Oct. 2004.
    [16] B. A. A. Antao; F. M. El-Turky; R. H. Leonowich; “Behavioral modeling
    phase-locked loops for mixed-mode simulation”, Analog Integrated Circuits and
    Signal Processing, 1996.
    [17] R. Y. Rubinstein, Simulation and the Monte Carlo Method, John Wiley & Sons,
    1981.
    [18] Felt, E.; Zanella, S.; Guardiani, C.; Sangiovanni-Vincentelli, A.; “Hierarchical
    statistical characterization of mixed-signal circuits using behavioral modeling”,
    IEEE/ACM International Conference on Computer-Aided Design, pp. 374-380,
    Nov. 1996.

    QR CODE
    :::