| 研究生: |
黃大祐 Ta-Yu Huang |
|---|---|
| 論文名稱: |
具共用方塊無偏移技術之2.4 GHz類比式雙迴路校正倍頻延遲鎖相迴路 2.4 GHz Analog Dual Loop Calibration Multiplying Delay Locked Loop with Block-Sharing Offset-Free Technology |
| 指導教授: |
鄭國興
Kuo-Hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 倍頻延遲鎖定迴路 |
| 外文關鍵詞: | Multiplying Delay Locked Loop |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出以無除頻器與類比式為架構的2.4 GHz具有雙迴路校正的倍頻延遲鎖相迴路,並且使用共用方塊無偏移技術來校正因週期性注入而產生的參考突波和定量性抖動。在倍頻延遲鎖相迴路上,週期性注入參考輸入時脈,以重置相位且消除累積抖動,並且使得迴路頻寬等效變大,有助於壓制振盪器的高頻雜訊,但因週期性注入參考時脈的行為,導致定量性抖動與參考突波的產生。在校正參考突波的方面,本篇使用延遲線迴路儲存振盪週期之週期時間,並且使用共用方塊無偏移技術,將不同時間點的振盪週期與注入週期作比較並精準調整振盪器頻率,以達到週期之間相等並降低參考突波。由於使用共用方塊無偏移技術,使得電路上的偏移會因為共用而被互相消除,以提升降低參考突波的效果。
本論文使用90 nm 1P9M (TN90GUTM)之CMOS製程來實現,電路操作電壓為1 V,參考輸入時脈頻率為50 MHz,高頻輸出時脈頻率為2.4 GHz。以下為佈局後模擬的數據,沒有校正時脈之參考突波為-24.2 dBc,經過校正時脈之參考突波為-54.5 dBc,因此有效降低30.3 dBc的參考突波,時脈之峰對峰值抖動量10.3 ps,方均根值抖動量為1.7 ps,振盪器的相位雜訊在1 MHz條件下為-92.6 dBc/Hz,經過倍頻延遲鎖相迴路的輸出相位雜訊降至-116.7 dBc/Hz,積分之方均根抖動量為0.4 ps,且功率消耗為6.58 mW,晶片面積為1.28 mm2,核心電路面積為0.057 mm2。
A 2.4 GHz multiplying delay locked loop with dual-loop calibration based on no divider and analog structure is presented in this thesis. And use the block-sharing offset-free technology to calibrate the reference spur and deterministic jitter caused by periodic injection. In the multiplying delay locked loop, the reference input clock is periodically injected to reset the phase error and eliminate the accumulated jitter, and make the loop bandwidth equivalently larger, which helps to suppress the high-frequency noise of the oscillator. However, the behavior of periodic injection can cause deterministic jitter and reference spur. In terms of calibrating reference spur, this article uses a delay line loop to store the cycle time of the oscillation cycle. By using the block-sharing offset-free technology, the oscillation period and the injection period at different time points are compared at the same time. And accurately adjust the oscillator frequency to achieve equal cycle between periods and reduce the reference spur. As a result of the block-sharing offset-free technology, the offset of the circuit will cancel each other without affecting the calibration result. Thereby improving the effect of reducing the reference spur.
The proposed multiplying delay locked loop is manufactured using TSMC 90nm 1P9M CMOS process. The power supply voltage is 1 V, the input reference frequency is 50 MHz, and the operating frequency is 2.4 GHz. The following is the simulation result after layout. The uncalibrated reference spur of the clock is -24.2 dBc, and the reference spur of the calibrated clock is -54.5 dBc. Therefore, the reference spur is reduced by 30.3 dBc. The peak-to-peak jitter of the clock is 10.3 ps, and the root-mean-square jitter is 1.7 ps. The phase noise of the oscillator is equal to -92.6 dBc/Hz at a frequency offset of 1 MHz. The output phase noise after the multiplying delay lock loop is reduced to -116.7 dBc/Hz. The integrated root-mean-square jitter is 0.4 ps, and the power consumption is 6.58 mW. The full chip area is 1.28 mm2 and the core area is 0.057 mm2.
[1] 楊育銜, “應用於SATA-III之6 GHz展頻時脈迴路,” 碩士論文, 國立中央大學, 2019.
[2] 高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005.
[3] 林擇瑋, “具快速次諧波時序自我校正機制之注入式鎖相迴路,” 碩士論文, 國立中央大學, 2016.
[4] P.K. Hanumolu, M. Brownlee, K. Mayaram, and Un-Ku Moon, “Analysis of charge-pump phase-locked loops, ” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1665–1674, Sep. 2004.
[5] H. Kim, Y. Kim, T. Kim, H.J. Ko, and S. Cho, “A 2.4-GHz 1.5-mW Digital Multiplying Delay-Locked Loop Using Pulsewidth Comparator and Double Injection Technique ,” IEEE J. Solid-State Circuits, vol. 52, no. 11, Nov., 2017.
[6] S. Yang, J. Yin, P.I. Mak, and R.P. Martins, “A 0.0056-mm2 -249-dB-FoM All-Digital MDLL Using a Block-Sharing Offset-Free Frequency-Tracking Loop and Dual Multiplexed-Ring VCOs ,” IEEE J. Solid-State Circuits, vol. 54, no. 1, Jan., 2019.
[7] S. Kundu, B. Kim, and C.H. Kim, “A 0.2–1.45-GHz Subsampling Fractional-N Digital MDLL With Zero-Offset Aperture PD-Based Spur Cancellation and In Situ Static Phase Offset Detection ,” IEEE J. Solid-State Circuits, vol. 52, no. 3, Mar., 2017.
[8] B.M. Helal, M.Z. Straayer, G.Y. Wei, and M.H. Perrott, “A Highly Digital MDLL-Based Clock Multiplier That Leverages a Self-Scrambling Time-to-Digital Converter to Achieve Subpicosecond Jitter Performance ,” IEEE J. Solid-State Circuits, vol. 43, no. 4, Apr., 2008.
[9] Q. Du, J. Zhuang, and T. Kwasniewski “A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for Spur Reduction, “ IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 11, pp. 1205–1209, Nov. 2006.
[10] C.S. Hwang, T.L. Chu, and W.C. Chen, “A clock generator based on multiplying delay-locked loop,” presented at the IEEE Int. System-on-Chip Conf., Las Vegas, NV, USA, 2014.
[11] S. Levantino, G. Marucci, G. Marzin, A. Fenaroli, C. Samori, and A.L. Lacaita, “A 1.7 GHz Fractional-N Frequency Synthesizer Based on a Multiplying Delay-Locked Loop ,” IEEE J. Solid-State Circuits, vol. 50, no. 11, Nov., 2015.
[12] T.A. Ali, A.A. Hafez, R. Drost, R.Ho, and C.K.K. Yang, “A 4.6GHz MDLL with −46dBc reference spur and aperture position tuning,” presented at the IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2011.
[13] 劉深淵, 揚清淵, 鎖相迴路, 滄海書局, 2006.
[14] H.H. Chang, J.W. Lin, C.Y. Yang, and S.I. Liu, “A wide-range Delay-Locked Loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1021-10277, Aug. 2002.
[15] S. Ye, L. Jansson, and I. Galton “A Multiple-Crystal Interface PLL With VCO Realignment to Reduce Phase Noise,” presented at the IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2002.
[16] 鄭柏旻, “具電容放大技術和自適應迴路增益控制器之5 Gbps雙路徑時脈與資料回復電路,” 碩士論文, 國立中央大學, 2017.
[17] 孫世洋, “以符碼間干擾偵測技術實現自適應等化器之5 Gbps半速率時脈與資料回復電路” 碩士論文, 國立中央大學, 2016.
[18] 涂祐豪, “具寬頻操作及自我相位校正之延遲鎖定迴路與頻率倍頻器” 碩士論文, 國立中央大學, 2010.