跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡愷逸
Kai-yi Chien
論文名稱: 高功率雷射二極體適應性車燈之研究
Optical Design of Adaptive Automotive Headlamp Based on Laser Diode
指導教授: 孫慶成
Ching-cherng Sun
楊宗勳
Tsung-hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 84
中文關鍵詞: 適應性車燈
外文關鍵詞: adaptive-scanning headlamp
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為一雷射二極體當光源的掃描式適應性車頭燈,運用電控振鏡系統的方式使得其光形符合歐洲車輛檢測法規ECE R112之汽車遠燈光形。為了得到最大出光量,討論不同的螢光粉噴塗方式與光通量的關係並深入分析探討,其中以直接噴塗在藍寶石基板的架構具有最高的光通量,其光通量可以達到351.6 lm,且能有效散熱。


    In this thesis, we design a adaptive-scanning headlamp with the laser diode. The light pattern is controlled by galvo mirror to meet the ECE R112 regulation for automotive high beam. We analyzed and discussed different type coating to increase the flux. Finally, we find out the type that phosphor coats on the sapphire has the hightest flux.The flux of 351.6 lm can be obtained. Furthermore, the type can effectively achieve the effect of heat dissipation.

    摘要. i Abstract ii 致謝. iii 目錄. iv 圖索引 vii 第一章 緒論 1 1.1 照明發展背景 1 1.2 適應性車頭燈簡介 3 1.3 研究動機與目的 8 1.4 論文大綱 9 第二章 基本理論 10 2.1 幾何光學 10 2.1.1 反射定律與折射定律 10 2.1.2 Fresnel 方程式 13 2.1.3 光展量 (Étendue) 14 2.2 輻射光度學 15 2.2.1 輻射學 18 2.2.2 照度餘弦定理 24 2.3 中場擬合法 27 第三章 掃描式車頭燈特性與實驗架構 30 3.1 歐盟車燈檢測法規 (ECE R112) 遠燈概述 30 3.2 掃描式車頭燈設計概念 31 3.2.1 掃描式車頭燈設計概念 32 3.2.2 總能量評估 33 3.3 掃描式車頭燈實驗架構 35 3.3.1 光學系統架設 36 3.3.2 實驗架構驅動方式與外部電路設計 37 3.4 振鏡掃描方式 39 3.4.1 垂直掃描 40 3.4.2 水平掃描 42 3.5 結論 44 第四章 掃描式車頭燈實驗分析與結果 45 4.1 各種透鏡的介紹與鏡頭像差之分析 45 4.1.1 球面光學透鏡 45 4.1.2 高NA之非球面透鏡 47 4.1.3 投影透鏡組 49 4.2 各種形式之螢光片與光通量的量測 49 4.2.1 相同粒子數、不同厚度之螢光片 49 4.2.2 噴塗螢光粉於玻璃之光通量分析 51 4.3 噴塗螢光粉於藍寶石基板與各種型式的分析 53 4.4 量測結果分析 58 4.4.1 介質為空氣的實驗結果分析 58 4.4.2 介質為水的實驗結果分析 60 4.5 結論 68 第五章 結論 70

    [1] H. J. Round, “A note on carborundum,” Electrical world 49, 309 (1907).
    [2] H. J. Nick and S. F. Bevacqua, “Coherent (visible) light emission from Ga (As1− xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [3] S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN pn junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998 (1991).
    [4] S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390-2392 (1993).
    [5] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [6] S. Nakamura, M. Senoh, N. Iwasa, and S.-I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L797 (1995).
    [7] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69, 4056-4058 (1996).
    [8] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story (Springer, Germany, 2000).
    [9] G. Held, Introduction to Light Emitting Diode Technology and Applications ( CRC Press, 2008).
    [10] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160-175 (2007).
    [11] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
    [12] J. Y. Tsao, “Solid-state lighting: lamps, chips, and materials for tomorrow,” IEEE Circuits Devices Mag. 20, 28-37 (2004).
    [13] A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80, 234-236 (2002).
    [14] A. Zukauskas, M. Shur, and R. Gaska, Introduction to Solid-State Lighting (J. Wiley, 2002).
    [15] Barron’s magazine, http://www.barrons.com/asia.
    [16] H. Kroemer, “Heterostructure Bipolar Transistors and Integrated Circuits,” Proc. IEEE 70, 0100-0013 (1982).
    [17] Z, I, Alferov, “The History and Future of Semiconductor Heterostructures from the Point of View of a Russian Scientist,” Phys Scripta T68, 32-45 (1996).
    [18] S. Nakamura, S. Senoh, S. Nagahama, N. Iwasa, and T. Yamada, “InGaN-based multi-quantum well structure laser diodes,” Japanese Journal of Applied Physics 35, L74-L76 (1996).
    [19] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strainedlayer superlattices,” Jpn. J. Appl. Phys. 36, 1568-1571 (1997).
    [20] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, I. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates with a fundamental transverse mode,” Jpn. J. Appl. Phys. 37,L10120-1022 (1998).
    [21] S. Nakamura, “InGaN-based violet laser diodes,” Semiconductor Science and Technology 14, R27-40 (1999).
    [22] S. Nakamura, M. Senoh, S. I. Nagahama, T. Matsushita, K. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and T. Mukai, “Violet InGaN/GaN/AlGaN-based laser diodes operable at 50 degrees C with a fundamental transverse mode,” Jpn. J. Appl. 38, L226-229 (1999).
    [23] S. Nagahama, N. Iwasa, M. Senoh, T. Matsuhita, Y. Sugimoto, H. Kiyoku, T. Kozai, M. Sano, H. Matsumura, H. Umemoto, K. Chocho, and T. Muka, “High power and long-lifetime InGaN multi-quantum well laser diodes grown on low-dislocation density GaN substrates, ” Jpn. J. Appl. Phys. 39,L647-L650 (2000).
    [24] MarketsandMarkets, http://www.marketsandmarkets.com/PressRel eases/las er-diode.asp.
    [25] Benz, http://www.mercedes-benz.com.tw.
    [26] Audi, http://www.audi.com.tw/tw/brand/zh/models/a8.
    [27] LEXUS, http://www.lexus.com.tw/.
    [28] Mazda, https://www.mazda.com.tw/.
    [29] Hella, http://www.hella.com.
    [30] Toyota Safety Technology, http://www.toyota-global.com/.
    [31] A. Günther, “Optical concept for an active headlamp with a DMD array,” Proc. SPIE 7003, 70032D (2008).
    [32] Y. L. Chen, Y. C. Fang, W. C. Lai, J. H. Sun, and K. Y. Wu, “Automotive headlight system and adaptive automotive headlight system with instant control and compensation,” US Patent No. 8,033,697 B2 (2011).
    [33] C. C. Hung, Y. C. Fang, M. S. Huang, B. R. Hsueh, S. f. Wang, B. W. Wu, W. C. Lai, and Y. L. Chen, “Optical design of automotive headlight system incorporating digital micromirror device,” Appl. Opt. 49, 4182-4187 (2010).
    [34] Audi A8 Matrix LED headligh, http://articles.sae.org/12579/.
    [35] Audi R8, http://www.audi.com.tw/.
    [36] BMW i8, http://www.bmw.com.tw/.
    [37] Audi Sport quattro, http://www.audi.de/de/brand/de/vorsprung_durch_tech n ik/content/2014/01/showcar-ces.html.
    [38] BMW i8, http://motorreview.com/bmw-i8-laser-light-technology-detailed/.
    [39] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE Press, Washington, 1998).
    [40] E. Hecht, Optics (Addison Wesley, San Francisco, 2002).
    [41] 孫慶成,光電工程概論,全華圖書股份有限公司,新北市,中華民國一百零一年。
    [42] 程勉儒,高功率白光 LED 適應性車燈之光學設計,國立中央大學光電所碩士論文,中華民國一百零三年。
    [43] 吳健君,LED 投射聚光型燈具與封裝晶粒大小之關係,國立中央大學光電所碩士論文,中華民國一百零二年。
    [44] 鄭佳申,白光LED之一階與二階光學設計,國立中央大學光電所碩士論文,中華民國九十七年。
    [45] 孫瑞宏,高功率LED應用於車前燈之設計,國立中央大學光電所碩士論文,中華民國九十五年。
    [46] Colour & Vision database, http://www.cvrl.org/.
    [47] 大田登,色彩工程學,第二版,全華圖書股份有限公司,新北市,中華民國九十七年。
    [48] J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE Press, Washington, 1998).
    [49] W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572-7577 (2007).
    [50] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
    [51] M. S. Kaminski, K. J. Garcia, M. A. Stevenson, M. Frate, and R. J. Koshel, in Proc. SPIE 4775, 46 (2002).
    [52] H. Zerfhau-Dreihöfer, U. Haack, T. Weber, and D. Wendt, in Proc. SPIE 4775, 58 (2002).
    [53] D. M. Tsai and C. T. Lin, “Fast normalized cross correlation for defect detection,” Pattern Recognit. Lett. 24, 2625-2631 (2003).
    [54] ECE Regulation Web, http://www.unece.org/trans/main/.

    QR CODE
    :::