跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翁浚銘
Jun-Ming Wong
論文名稱: 以少量視訊建構台灣手語詞分類模型
Using a Small Video Dataset to Construct a Taiwanese-Sign-Language Word Classification Model
指導教授: 蘇柏齊
Po-Chyi Su
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 軟體工程研究所
Graduate Institute of Software Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 53
中文關鍵詞: 台灣手語手語識別深度學習
外文關鍵詞: Taiwanese sign language, sign language recognition, deep learning
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 手語是一種視覺語言,利用手形、動作,甚至面部表情傳達訊息以作為聽障人
    士主要的溝通工具。以深度學習技術進行手語辨識在近年來受到矚目,然而神經網
    路訓練資料需仰賴大量手語視訊,其製作過程頗費時繁瑣。本研究提出利用單一手
    語視訊建構深度學習訓練資料的方法,實現在視訊畫面中辨識台灣手語詞彙。
    首先,我們由視訊共享平台中取得一系列手語教學視訊,透過Mask RCNN[1]
    找出所有教學畫面中的手部和面部分割遮罩,再透過空間域數據增強來創建更多不
    同內容的訓練集。我們也採用不同的時間域採樣策略,模擬不同手譯員的速度。最
    後我們以具注意力機制的3D-ResNet 對多種台灣手語辭彙進行分類,實驗結果顯
    示,我們所產生的合成資料集能在手語辭彙辨識上帶來幫助。


    Sign languages (SL) are visual languages that use shapes of hands,
    movements, and even facial expressions to convey information, acting
    as the primary communication tool for hearing-impaired people. Sign
    language recognition (SLR) based on deep learning technologies has attracted
    much attention in recent years. Nevertheless, training neural
    networks requires a massive number of SL videos. Their preparation process
    is time-consuming and cumbersome. This research proposes using a
    set of SL videos to build effective training data for the classification of
    Taiwanese Sign Language (TSL) vocabulary. First, we begin with a series
    of TSL teaching videos from the video-sharing platform. Then, Mask
    RCNN[1] is employed to extract the segmentation masks of hands and
    faces in all video frames. Next, spatial domain data augmentation is applied
    to create the training set with different contents. Varying temporal
    domain sampling strategies are also employed to simulate the speeds of
    different signers. Finally, the attention-based 3D-ResNet trained by the
    synthetic dataset is used to classify a variety of TSL vocabulary. The
    experimental results show the promising performance and the feasibility
    to SLR.

    1 Introduction 1 1.1 Motivation of Research . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution of Research . . . . . . . . . . . . . . . . . . . 3 1.3 The Organization of Thesis . . . . . . . . . . . . . . . . . 4 2 Related Work 5 2.1 TSL Background . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Sign Language . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Types of TSL . . . . . . . . . . . . . . . . . . . . . 7 2.2 Related Solutions . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Annotation Type of Data . . . . . . . . . . . . . . 10 2.2.2 Methods of Eliciting Features . . . . . . . . . . . . 10 2.2.3 Deep Learning Models . . . . . . . . . . . . . . . . 11 3 TSL Recognition 17 3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 TSL Dataset . . . . . . . . . . . . . . . . . . . . . 17 3.1.2 Data Augmentation . . . . . . . . . . . . . . . . . 18 3.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Local feature attention . . . . . . . . . . . . . . . . 24 3.2.2 Layer attention . . . . . . . . . . . . . . . . . . . . 24 3.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Experimental Results 29 4.1 Development Environment . . . . . . . . . . . . . . . . . . 29 4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.1 Test dataset . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 Spatial domain results . . . . . . . . . . . . . . . . 30 4.2.3 Temporal domain results . . . . . . . . . . . . . . . 31 4.2.4 Attention effects . . . . . . . . . . . . . . . . . . . 32 5 Conclusion and Future Work 34 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 36 References 37

    [1] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In
    Proceedings of the IEEE international conference on computer vision,
    pages 2961–2969, 2017.
    [2] S. Jetley, N. A. Lord, N. Lee, and P. H. Torr. Learn to pay attention.
    arXiv preprint arXiv:1804.02391, 2018.
    [3] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In
    Proceedings of the IEEE conference on computer vision and pattern
    recognition, pages 7132–7141, 2018.
    [4] O. Koller, J. Forster, and H. Ney. Continuous sign language recognition:
    Towards large vocabulary statistical recognition systems handling
    multiple signers. Computer Vision and Image Understanding,
    141:108–125, Dec. 2015.
    [5] J. Pu, W. Zhou, J. Zhang, and H. Li. Sign language recognition based
    on trajectory modeling with hmms. In International Conference on
    Multimedia Modeling, pages 686–697. Springer, 2016.
    [6] L. Lamberti and F. Camastra. Real-time hand gesture recognition
    using a color glove. In International Conference on Image Analysis
    and Processing, pages 365–373. Springer, 2011.
    [7] L.-J. Kau, W.-L. Su, P.-J. Yu, and S.-J. Wei. A real-time portable
    sign language translation system. In 2015 IEEE 58th International
    Midwest Symposium on Circuits and Systems (MWSCAS), pages 1–4.
    IEEE, 2015.
    [8] L. Jing, E. Vahdani, M. Huenerfauth, and Y. Tian. Recognizing
    american sign language manual signs from rgb-d videos. arXiv
    preprint arXiv:1906.02851, 2019.
    [9] D.-Y. Huang, W.-C. Hu, and S.-H. Chang. Vision-based hand gesture
    recognition using pca+ gabor filters and svm. In 2009 fifth international
    conference on intelligent information hiding and multimedia
    signal processing, pages 1–4. IEEE, 2009.
    [10] K. Pearson. Liii. on lines and planes of closest fit to systems of points
    in space. The London, Edinburgh, and Dublin Philosophical Magazine
    and Journal of Science, 2(11):559–572, 1901.
    [11] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
    20(3):273–297, 1995.
    [12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
    recognition. In Proceedings of the IEEE conference on computer
    vision and pattern recognition, pages 770–778, 2016.
    [13] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns
    retrace the history of 2d cnns and imagenet? In Proceedings of the
    38
    IEEE conference on Computer Vision and Pattern Recognition, pages
    6546–6555, 2018.
    [14] M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches
    to attention-based neural machine translation. arXiv preprint
    arXiv:1508.04025, 2015.
    [15] D. Britz, A. Goldie, M.-T. Luong, and Q. Le. Massive exploration
    of neural machine translation architectures. arXiv preprint
    arXiv:1703.03906, 2017.
    [16] J. Cheng, L. Dong, and M. Lapata. Long short-term memorynetworks
    for machine reading. arXiv preprint arXiv:1601.06733,
    2016.
    [17] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation
    by jointly learning to align and translate. arXiv preprint
    arXiv:1409.0473, 2014.
    [18] P. Sermanet, A. Frome, and E. Real. Attention for fine-grained categorization.
    arXiv preprint arXiv:1412.7054, 2014.
    [19] X. Liu, T. Xia, J. Wang, Y. Yang, F. Zhou, and Y. Lin. Fully
    convolutional attention networks for fine-grained recognition. arXiv
    preprint arXiv:1603.06765, 2016.
    [20] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition
    with visual attention. arXiv preprint arXiv:1412.7755, 2014.
    [21] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
    R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In International conference
    on machine learning, pages 2048–2057. PMLR, 2015.
    [22] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models
    of visual attention. arXiv preprint arXiv:1406.6247, 2014.
    [23] R. S. Sutton. Learning to predict by the methods of temporal differences.
    Machine learning, 3(1):9–44, 1988.
    [24] L. Wright. Ranger - a synergistic optimizer. https://github.com/
    lessw2020/Ranger-Deep-Learning-Optimizer, 2019.
    [25] D. R. Cox. The regression analysis of binary sequences. Journal
    of the Royal Statistical Society: Series B (Methodological), 20(2):
    215–232, 1958.
    [26] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
    hierarchies for accurate object detection and semantic segmentation.
    In Proceedings of the IEEE conference on computer vision and pattern
    recognition, pages 580–587, 2014.
    [27] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international
    conference on computer vision, pages 1440–1448, 2015.
    [28] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards realtime
    object detection with region proposal networks. arXiv preprint
    arXiv:1506.01497, 2015.
    [29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
    once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–
    788, 2016.
    [30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
    G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
    A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
    M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
    C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
    P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
    P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
    Flow: Large-scale machine learning on heterogeneous systems, 2015.
    URL https://www.tensorflow.org/. Software available from tensorflow.
    org.

    QR CODE
    :::