| 研究生: |
翁浚銘 Jun-Ming Wong |
|---|---|
| 論文名稱: |
以少量視訊建構台灣手語詞分類模型 Using a Small Video Dataset to Construct a Taiwanese-Sign-Language Word Classification Model |
| 指導教授: |
蘇柏齊
Po-Chyi Su |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 軟體工程研究所 Graduate Institute of Software Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 台灣手語 、手語識別 、深度學習 |
| 外文關鍵詞: | Taiwanese sign language, sign language recognition, deep learning |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
手語是一種視覺語言,利用手形、動作,甚至面部表情傳達訊息以作為聽障人
士主要的溝通工具。以深度學習技術進行手語辨識在近年來受到矚目,然而神經網
路訓練資料需仰賴大量手語視訊,其製作過程頗費時繁瑣。本研究提出利用單一手
語視訊建構深度學習訓練資料的方法,實現在視訊畫面中辨識台灣手語詞彙。
首先,我們由視訊共享平台中取得一系列手語教學視訊,透過Mask RCNN[1]
找出所有教學畫面中的手部和面部分割遮罩,再透過空間域數據增強來創建更多不
同內容的訓練集。我們也採用不同的時間域採樣策略,模擬不同手譯員的速度。最
後我們以具注意力機制的3D-ResNet 對多種台灣手語辭彙進行分類,實驗結果顯
示,我們所產生的合成資料集能在手語辭彙辨識上帶來幫助。
Sign languages (SL) are visual languages that use shapes of hands,
movements, and even facial expressions to convey information, acting
as the primary communication tool for hearing-impaired people. Sign
language recognition (SLR) based on deep learning technologies has attracted
much attention in recent years. Nevertheless, training neural
networks requires a massive number of SL videos. Their preparation process
is time-consuming and cumbersome. This research proposes using a
set of SL videos to build effective training data for the classification of
Taiwanese Sign Language (TSL) vocabulary. First, we begin with a series
of TSL teaching videos from the video-sharing platform. Then, Mask
RCNN[1] is employed to extract the segmentation masks of hands and
faces in all video frames. Next, spatial domain data augmentation is applied
to create the training set with different contents. Varying temporal
domain sampling strategies are also employed to simulate the speeds of
different signers. Finally, the attention-based 3D-ResNet trained by the
synthetic dataset is used to classify a variety of TSL vocabulary. The
experimental results show the promising performance and the feasibility
to SLR.
[1] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision,
pages 2961–2969, 2017.
[2] S. Jetley, N. A. Lord, N. Lee, and P. H. Torr. Learn to pay attention.
arXiv preprint arXiv:1804.02391, 2018.
[3] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7132–7141, 2018.
[4] O. Koller, J. Forster, and H. Ney. Continuous sign language recognition:
Towards large vocabulary statistical recognition systems handling
multiple signers. Computer Vision and Image Understanding,
141:108–125, Dec. 2015.
[5] J. Pu, W. Zhou, J. Zhang, and H. Li. Sign language recognition based
on trajectory modeling with hmms. In International Conference on
Multimedia Modeling, pages 686–697. Springer, 2016.
[6] L. Lamberti and F. Camastra. Real-time hand gesture recognition
using a color glove. In International Conference on Image Analysis
and Processing, pages 365–373. Springer, 2011.
[7] L.-J. Kau, W.-L. Su, P.-J. Yu, and S.-J. Wei. A real-time portable
sign language translation system. In 2015 IEEE 58th International
Midwest Symposium on Circuits and Systems (MWSCAS), pages 1–4.
IEEE, 2015.
[8] L. Jing, E. Vahdani, M. Huenerfauth, and Y. Tian. Recognizing
american sign language manual signs from rgb-d videos. arXiv
preprint arXiv:1906.02851, 2019.
[9] D.-Y. Huang, W.-C. Hu, and S.-H. Chang. Vision-based hand gesture
recognition using pca+ gabor filters and svm. In 2009 fifth international
conference on intelligent information hiding and multimedia
signal processing, pages 1–4. IEEE, 2009.
[10] K. Pearson. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 2(11):559–572, 1901.
[11] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.
[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.
[13] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet? In Proceedings of the
38
IEEE conference on Computer Vision and Pattern Recognition, pages
6546–6555, 2018.
[14] M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches
to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.
[15] D. Britz, A. Goldie, M.-T. Luong, and Q. Le. Massive exploration
of neural machine translation architectures. arXiv preprint
arXiv:1703.03906, 2017.
[16] J. Cheng, L. Dong, and M. Lapata. Long short-term memorynetworks
for machine reading. arXiv preprint arXiv:1601.06733,
2016.
[17] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.
[18] P. Sermanet, A. Frome, and E. Real. Attention for fine-grained categorization.
arXiv preprint arXiv:1412.7054, 2014.
[19] X. Liu, T. Xia, J. Wang, Y. Yang, F. Zhou, and Y. Lin. Fully
convolutional attention networks for fine-grained recognition. arXiv
preprint arXiv:1603.06765, 2016.
[20] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition
with visual attention. arXiv preprint arXiv:1412.7755, 2014.
[21] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In International conference
on machine learning, pages 2048–2057. PMLR, 2015.
[22] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models
of visual attention. arXiv preprint arXiv:1406.6247, 2014.
[23] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988.
[24] L. Wright. Ranger - a synergistic optimizer. https://github.com/
lessw2020/Ranger-Deep-Learning-Optimizer, 2019.
[25] D. R. Cox. The regression analysis of binary sequences. Journal
of the Royal Statistical Society: Series B (Methodological), 20(2):
215–232, 1958.
[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 580–587, 2014.
[27] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448, 2015.
[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards realtime
object detection with region proposal networks. arXiv preprint
arXiv:1506.01497, 2015.
[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–
788, 2016.
[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software available from tensorflow.
org.