| 研究生: |
王立仁 Li-Jen Wang |
|---|---|
| 論文名稱: |
自磁種凝絮污泥回收再利用奈米磁性顆粒─以化學機械研磨廢水為例 Recovery of nano-magnetite from silica/magnetite aggregates in magnetic seeding aggregation of CMP wastewaters |
| 指導教授: |
秦靜如
Ching-Ju Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 磁性顆粒 、再生率 、化學機械研磨廢水 、界面活性劑 |
| 外文關鍵詞: | surfactant, magnetite, magnetic seeding, CMP wastewater |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般處理化學機械研磨廢水(CMP wastewaters)須添加大量混凝劑,如此會產生大量污泥,並且所使用之混凝劑無法再次利用,因而提高廢水處理成本及環境上之負荷。本研究群前期已利用自行製備的氧化鐵奈米顆粒(Fe3O4),以磁種凝絮法處理化學機械研磨(CMP)廢水中的奈米懸浮顆粒,針對濁度去除率可達95%以上。且投入的氧化鐵顆粒可回收再利用於廢水處理系統中為磁種凝絮法的優點之一,因此本研究藉由加入不同濃度(0.1~2.0 CMC)及種類之界面活性劑(SDS及CTAB)回收再利用氧化鐵顆粒,以減少廢水處理成本及污泥產生量。研究中發現,若將氧化鐵以連續使用方式處理CMP廢水,1g 的Fe3O4可負載廢水中359 mg的總矽量。若加入低濃度(系統濃度0.1 CMC)之CTAB於處理系統中,可延長氧化鐵再用性。且針對廢水中濁度及總矽去除率均可達97 %以上,相當於1g 的Fe3O4可負載廢水中1917 mg的總矽量。若相較於利用氧化鐵單一次處理CMP廢水,其總矽增加率高達1497.5 %。若加入低濃度SDS,對於氧化鐵再用性僅有些微幫助,總矽增加率為400 %。實驗結果顯示,加入高濃度(系統濃度2 CMC)之SDS或CTAB回收再利用氧化鐵顆粒,其會增加氧化鐵與二氧化矽顆粒間之立體能障(steric repulsion),故氧化鐵顆粒處理廢水之成效即會大幅降低。
Magnetic seeding aggregation has been developed to remove silica nanoparticles from CMP wastewaters successfully with removal efficiency of turbidity higher than 95 %. With proper treatments, seeded magnetite (Fe3O4) nanoparticles can be reused repeatedly in the magnetic seeding aggregation of CMP wastewaters. In this study, the recovery of magnetite nanoparticles by different types and concentrations of surfactants and removal efficiency of total silicon (e.g. summation of silica nanoparticles and silicate) from CMP wastewaters treated by reused seeding particles were investigated. Experimental results showed that recovery of magnetite nanoparticles was always higher than 99% when silica/magnetite aggregates were treated by any SDS or CTAB concentrations used in this work (0.1 ~ 2 CMC). Though the addition of CTAB limited the separation between silica and magnetite nanoparticles, this improved the reusability of magnetite nanoparticles, which was due to lateral interactions of hydrophobic groups of CTAB molecules adsorbed on the surface of silica nanoparticles. When silica/magnetite aggregates were treated by 0.1 CMC CTAB, the silicon removal ability of magnetite nanoparticles is 1917 mg total Si / 1g magnetite, which is 1497.5% more than those used only once in the magnetic seeding aggregation of CMP wastewaters. However, total silicon removal efficiency of CMP wastewaters was very poor when they were treated by high concentration (2 CMC) of CTAB or SDS. This might be due to the steric repulsions between particles resulted from adsorbed surfactant molecules.
參考文獻
1. 羅於陵、鄭凱安,奈米技術投資與市場發展趨勢,經濟部工業局,2002。
2. 張俊彥著,積體電路製程及設備技術手冊,中華民國經濟部技術處,1996。
3. 鄧宗禹、黃志彬、邱顯盛,化學機械研磨廢液之處理與回收:一、技術簡介,微毫米通訊,9(1),pp. 32-41,2002。
4. 陳珮紋,利用Fe3O4磁性顆粒處理化學機械研磨廢水,碩士論文,中央大學環境工程研究所,中壢,2004。
5. Hiemenz Paul C., Raj Rajagoplan, Principles of Colloid and Surface Chemistry, 3nd Ed, Marcel Dekker Publisher, New York, 1997.
6. Derjaguin, B. V., L. D. Landau, “Theory of Stability of Strong Charge Lyophobioc Sols and of the Adhesion of Strong Charged Particles in Solutions of Electrolytes”, Acta Physicochimca URSS, 14, pp. 633-662, 1941.
7. Verwey, E. J., J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloid, Elsevier, Amsterdam, 1948.
8. 張有義、郭蘭生編譯,膠體及界面化學入門,高立出版社,1997。
9. Stern, O., “Zur Theorie der, Elektrolytischem Doppelschicht”, Acta Electro-chemistry, 30, pp. 508-532, 1924.
10. 林建三,環境工程概論,鼎茂圖書出版,2002。
11. Molina-Bolivar, J. A., F. Galisteo-Gonzalez, R. Hidalgo-Alvarez, “Repeptization Determined by Turbidity and Photon Correlation Spectroscopy Measurements: Particle Size Effects ”, Journal of Colloid Interface and Science, 195(2), pp. 289-298, 1997.
12. Anastassakis, Georigios N., “Separation of Fine Mineral Particles by Selective Magnetic Coating ” , Journal of Colloid Interface and Science, 256(1), pp. 114-120, 2002.
13. Litton, Gary M., Terese M. Olson,“Particle size effects on colloid deposition kinetics: evidence of secondary minimum deposition ”, Colloid and Surface A: Physicochemical and Engineering Aspects, 107, pp. 273-283, 1996.
14. Sujoy, B. R., David A. Dzombak, “Colloid release and transport processes in natural and model porous media ”, Colloid and Surfac A:Physicochemical and Engineering Aspects, 107, pp. 245-262, 1996.
15. 張閔然,竹科污水中奈米微粒之特性與污水污泥之脫水性,碩士論文,台灣
大學化學工程研究所,台北,2003。
16. Schmidt, H. K., “Organically Modified Silicates and Ceramics an Two-phase System : Synthesis and Processing”, Journal of Sol-Gel Technology, 8, pp. 557-563, 1997.
17. 謝岱紘,界面活性劑類型與含量對四氯乙烯在氣液間質傳現象影響之探討,碩士論文,高雄第一科技大學環境與安全衛生工程系,高雄,2004。
18. 染化資訊網站。網址:http://www.dfmg.com.tw/fn-index.html。
19. 曹恆光、連大成,淺談微乳液,物理雙月刊,第二十三卷,第四期,pp. 488-493,2001。
20. Bourrel, M., R. S. Schechter, Microemulsions and Related System, Marvel Dekker Inc., New York , 1998.
21. Paria, S., Khilar, K. C,“A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface ”, Advances in Colloid and Interface Science, 110(3), pp. 75-95, 2004.
22. Somasundaran, P., L., Hung, “Adsorption/aggregation of surfactants and their mixtures at solid”, Advances in Colloid and Interface Science, 88(1-2), pp. 179-208, 2000.
23. Biswas, S. C., D. K. Chattoraj, “Kinetics of Adsorption of Cationic Surfactants at Silica-Water Interface ”, Journal of Colloid Interface and Science , 205(1), pp. 12-20, 1998.
24. Somasundaran, P., S. Krishnakumar, “Adsorption of surfactants and polymers at the solid-liquid interface ”, Colloid and Surface A:Physicochemical and Engineering Aspects, 123-124, pp. 491-513, 1997.
25. 李啟旻,添加界面活性劑於電聚浮除法處理化學機械研磨(CMP)廢水之研究,碩士論文,臺灣大學環境工程學研究所,台北,2003。
26. Fuerstenau, Douglas W., Ronaldo Herrera-Urbina, Surfactant science series, volume 33, pp. 259-314, 1989.
27. Mittal, K. L., D. O. Shah, editor, Surfactants in Solution volume 11, Plenum Publisher, New York , pp. 293-302, 1991.
28. Porter, M. R., Handbook of Surfactant, Blackie Academic & Professional Published, New York, 1991.
29. Sharma, B. G., S. Basu, M. M. Sharma,“Characterization of Adsorbed Ionic Surfactants on a Mica Substrate”, Langmuir, 12, pp. 6506-6512, 1996.
30. Hu, C. Y., S.L. Lo, C.M. Li and W.H. Kuan, “Treating chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation process with surfactant ”, Journal of Hazardous Materials , 120(1-3), pp. 15-20, 2005.
31. Blakeburn, D. Lowrt, John F. Scamehorn, , Surfactant science series, volume 33, pp. 205-229, 1989.
32. Lee, Do-Won, Nam-Hoon Kim, Eui-Goo Chang, “Effect of nonionic surfactants on the stability of alumina slurry for Cu CMP ”, Materials Science and Engineering B, 118 (1-3), pp. 293-300, 2005.
33. Feng, D., C. Aldrich, H. Tan, “Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates ”, Hydrometallurgy,56(3), pp.359-368, 2000.
34. Chun, Chan-Lan, Jae-Wood Park, “Oil spill remediation using magnetic separation”, Journal of Environmental Engineering, 127(5), pp. 443-449, 2001.
35. Sakai, Y., Takahiro Miama and Fujio Takahashi, “Simultaneous removal of organic and nitrogen compounds in intermittently aerated activated sludge process using magnetic separation”, Water Research, 31(8), pp.2113-2116, 1997.
36. Latour, C. D.,“Magnetic separation in water pollution control”, IEEE Transactions on Magnetics, 9(3), pp. 314-316, 1973.
37. Latour, C. D., “Magnetic separation in water pollution control - II”, IEEE Transactions on Magnetics , 11(5), pp. 1570-1572, 1975.
38. Kaminski, M. D., L. Nunez,“Cesium extraction from a novel chemical solvent using magnetic micro-particles”, Separation Science and Technology, 37(16), pp.3703-3714, 2002.
39. Oliveira, Luiz C. A., Rachel V. R. A. Rios, “Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water ”, Carbon, 40(12), pp. 2177-2183, 2002.
40. Oliveira, Luiz C. A., Rachel V. R. A. Rios, “Clay–iron oxide magnetic composites for the adsorption of contaminants in water ”, Applied Clay Science, 22(4), pp.169-177, 2003.
41. Weiss, Donald E., Luis O. Kolarik, Anthony J. Priestley, Nevil J. Anderson,“Water clarification”, United States Patent, PAT. NO. 4279756, 1981.
42. 黃志彬、江萬豪,產業廢水回收再利用-半導體業,化工技術第11卷,第12期,pp. 2-12,2003。
43. 游純青,介孔矽質MCM-48之光學研究,碩士論文,中原大學應用物理研究所,中壢,2003。
44. 鄭景軒,磁性奈米微粒之二氧化矽被覆技術之研究,碩士論文,成功大學機械工程學研究所,台南,2003。
45. 陳澄佑,磁性流體的研製,碩士論文,清華大學材料科學與工程研究所,新竹,1993。
46. Khalafalla, S. E., G. W. Reimers, “Preparation of Dilution Stable Aqueous Magnetic Fluid”, IEEE Transactions on Magnetics, 16(2), pp. 178-183, 1980.
47. Cho, Y. S., G. S. Choi, S. Y. Hong, D. Kim, “Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition ”, Journal of Crystal Growth, 243(1), pp. 224-229, 2002.
48. Wu, T. k., P. C. Kou, Y. D. Yao, E. H. Tsai, “Magnetic and Optical Properties of Fe3O4 Nanoparticale Ferrofluids Prepared by Coprecipitation ”, IEEE Transactions on Magnetics, 37(4), pp. 2651-2653, 2001.
49. 行政院環保署環境檢驗所,水質檢測方法。網址:http://www.niea.gov.tw/。
50. Cornell, R. M., U. Schwertmann, The iron oxides – Structure, Properties, Occurrence and Uses, VCH Publishers, New York, 1996.
51. Sun, Z. X., F. W. Su, W. Forsling, P. O. Samskog, “Surface Characteristics of Magnetite in Aqueous Suspension”, Journal of Colloid and Interface Science, 197(1), pp. 151-159, 1998.