跳到主要內容

簡易檢索 / 詳目顯示

研究生: 塗翎
Lin Tu
論文名稱: 隨季節變化之灶神星冰極模擬
The Seasonal Exchange Model of Polar Caps of Vesta
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 49
中文關鍵詞: 熱模擬外球層曙光號灶神星穀神星沾粘效應水冰彈道軌跡橢球重力場
外文關鍵詞: ellipsoid gravity, Dawn Mission, Vesta, cold trap, ballistic motion
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了探究行星原始的狀態,科學家們將目標指向保留較多原始資訊的小行星,而曙光號正是為此目的而出發的,探測目標為穀神星,灶神星,及智神星。主小行星帶的位置在火星及木星的軌道之間,在這個區域中有一條有名的邊界,雪線,是劃分小行星殘餘水分與否的標的。目前為止已經有許多研究利用模擬,探討小行星上塵埃層以下是否能留有水冰(詳見費奈立等人在1987年發表的論文及巴南等人在1989年發表的論文及薛爾福等人在2008年發表的論文)。
    本篇論文使用三維外球層模型,三維熱模形,及三維光線跟蹤模擬方法,來計算灶神星上水冰留存的機率。更甚者,由於灶神星的自轉軸傾角達二十一度,因此季節變化明顯,不同季節也會造成在灶神星上陰影及輻射量改變,這使得溫度改變同時也影響了水分子在表面的沾粘效應。


    To detect the more original state of minor planets, now there is one mission exploring the main asteroids belt, Dawn Mission, and the destinations are Vesta, Ceres, and maybe Pallas. At the orbit between Mars and Jupiter, the region that main asteroids belt locates can be divided by the well-known boundary, snowline. Although the existence of water ice on Vesta hasn’t been found yet, many researches (cf. Fanale and Savail, 1987; Bar-Nun et al., 1989; Schorghofer, 2008) simulate the amount of water ice survived under dust mantle in the main asteroids belt.
    This thesis applies the 3D exospheric model, 3D thermal model and ray tracing to simulate the survival rate of water ice on Vesta. Moreover, the seasonal effect on Vesta makes the diurnal temperature different, which also changes the region of adsorption and cold traps. The proposed ray tracing model can be used to compute the seasonal change of solar radiation flux which dominates the diurnal temperature. However, the mean free path of molecules in the exosphere of Vesta is dominated by the gravity. Since the shape of Vesta is not spherical, the proposed exospheric model also applies the elliptical gravity.

    摘要iii Abstract iv 致謝v List of Figures viii List of Tables ix 1. Introduction 1 1.1 Asteroid Belt 1 1.2 Orbi tal Dist r ibut ion 1 1.3 Size Dist r ibut ion 1 1.4 Compos i t ion 3 1.5 Types (Taxonomy) 4 1.6 Origin (families) 5 1.7 Large Asteroids of Dwarf Planet 5 1.7.1 Ceres 5 1.7.2 Pallas 6 1.7.3 Vesta 7 1.8 Dawn Mission 8 2. Exosphere 10 2.1 Relation to surface composition 10 2.1.1 Solar Wind Interaction 10 2.1.2 Micrometeoroid Bombardment 11 2.1.3 Outgassing 11 2.2 Volatiles 12 2.3 Vesta 14 2.3.1 S-type 14 2.3.2 Small gravity 14 3. Model Calculations 16 3.1 Shape 16 3.2 Solar Radiation Flux calculation 19 3.3 Thermal Calculation 21 3.4 Ellipsoid gravity field 28 3.5 Ballistic transform 30 4. Results 32 4.1 Statics 32 4.2 Survival rate 32 5. Discussion and Summary 35 Bibliography 36

    A’Hearn, M. F., and P. D. Feldman (1992), Water vaporization on Ceres. Icarus 98, 389-407.
    Arnold, J. R. (1979), Ice in the lunar polar regions. J. Geophys. Res. 84, 5659-5668.
    Banaszkiewicz, M. and W.-H. Ip (1991), A statistical study of impact ejecta distribution around Phobos and Deimos. Icarus, Volume 90, Issue 2, Pages 237–253
    Burke, D. J., C. A. Dukes, J. -H. Kim, J. Shi, M. Famá, and R. A. Baragiola (2011), Solar wind contribution to surficial lunar water: Laboratory invesgitations, Icarus 211, 1082-1088.
    Butler, B. J. (1997), The migration of volatiles on the surfaces of Mercury and the Moon, J. Geophys. Res. 102, 283-291.
    Bagatin, A. C., J.-M. Petit, and P. Farinella (2001), How Many Rubble Piles Are in the Asteroid Belt? Icarus, Volume 149, Issue 1, Pages 198–209
    Clark R. Chapman, David Morrison, and Ben Zellner (1975), Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus, Volume 25, Issue 1, Pages 104–130
    Clark, R. (2009), Detection of adsorbed water and hydroxyl on the Moon, Science 326, 562-564.
    Colaprete, A., P. Schultz, and J. Heldmann et al. (2010), Detection of Water in the LCROSS Ejecta Plume, Science 330, 463-468.
    Davis, D. R., K. R. Housen, and Richard Greenberg (1981), The unusual dynamical environment of Phobos and Deimos. Icarus, Volume 47, Issue 2, Pages 220–233
    Domingue, D. L., P. L. Koehn, and R. M. Killen et al. (2007), Mercury’s Atmosphere: A Surface-Bounded Exosphere, Space Sci. Rev. 131, 161-186.
    Fanale, F. P. and J. R. Salvail (1989), The water regime of asteroid (1) Ceres, Icarus 82, 97.
    Feldman, W. C., S. Maurice, A. B. Binder, B. L. Barraclough, R. C. Elphic, and D. J. Lawrence (1998), Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles, Science 281, 1496-1500.
    Hodges Jr., R. R. (1991), Exospheric transport restrictions on water ice in lunar polar traps, J. Geophys. Res. Lett. 18, 2113-2116.
    Huebner, W. F., and C. W. Carpenter (1979), Solar photo rate coefficients. NASA informal report LA-8085-MS, 97.
    Jaumann, R., et al. (2012), Vesta’s shape and morphology, Science, 336, 687–694, doi:10.1126/science.121922.
    Jones, T. D. (1988), An Infrared Reflectance Study of Water in Outer Belt Asteroids: Clues to Composition and Origin, Thesis, University of Arizona, Tucson.
    Killen, R. M. and W. -H. Ip (1999), The surface-bounded atmospheres of Mercury and the Moon, Rev. Geophys. Space Phys. 37, 361-406.
    Lawrence, D. J., W. C. Feldman, and J. O. Goldstein et al. (2012), Evidence for water ice near Mercury’s North Pole from MESSENGER neutron spectrometer measurements, Science, 10.1126/science.1229953.
    Managadzea, G. G., V. T. Cherepin, Y. G. Shkuratov, V. N. Kolesnik, and A. E. Chumikov (2011), Simulating OH/H2O formation by solar wind at the lunar surface, Icarus 215, 449–451.
    Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012), The violent collisional history of asteroid 4 Vesta. Science, 336, 690
    McCord, T. B., and Ch. Sotin (2005), Ceres: Evolution and current state, J. Geophys. Res. 110, E05009.
    McGrath, M. A., R. E. Johnson, and L. J. Lanzerotti (1986), Sputtering of sodium on the planet Mercury., Nature 22, 694-696.
    Milillo, A., P. Wurz, and S. Orsini et al. (2005), Surface–exosphere–magnetosphere system of Mercury, Space Sci. Rev. 117, 397–443.
    Pieters, C. M., S. Besse, and J. Boardman et al. (2011), Mg‐spinel lithology: A new rock type on the lunar farside, J. Geophys. Res. 116, E00G08.
    Pieters, C. M., J. N. Goswami, and R. N. Clark et al. (2009), Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1, Science 326, 568.
    Potter, A. E. (1995), Chemical sputtering could produce sodium vapor and ice on Mercury, Geophys. Res. Lett. 22, 3290.
    Potter, A. E. and T. H. Morgan (1997), Sodium and potassium atmospheres of Mercury, Planet. Space Sci. 45, 95–100.
    Rivkin, A. S., J. Y. Li, and R. E. Milliken et al. (2011), The surface composition of Ceres, Space Sci. Rev. 163, 95.
    Rousselot, P., E. Jehin, and J. Manfroid et al. (2011), A search for water vaporization on Ceres. Astron. J. 142, 125.
    Stubbs, T. J. and Y. Wang (2012) On the presence of water at the asteroid 4 Vesta, 43rd Lunar and Planetary Science Conference.
    Tanga, P., Loreggia, D., Hestroffer, D., Lattanzi, M., Cellino, A., Guglielmetti, F.(1999), Direct measurements of asteroid sizes and duplicity search by the HST FGS interferometer. Bulletin of the Astronomical Society, Vol. 31, No. 4, p. 1105, #20.03
    Tholen, D. J. (1984), Asteroid Taxonomy from Cluster Analysis of Photometry. Doctoral thesis, University of Arizona.
    Thomas, P. C., R. P. Binzel, M. J. Gaffey, B. H. Zellner, A. D. Storrs, and E. Wells (1997) Vesta: Spin Pole, Size, and Shape from HST Images, Icarus 128, 88–94.
    Thomas, P. C., J. Wm. Parker, L. A. McFadden, C. T. Russell, S. A. Stern, M. V. Sykes, E. F. Young (2005), Differentiation of the Asteroid Ceres as revealed by its shape, Nature 437, 224–226.
    Wang, Y. C., and W. -H. Ip (2011), Source dependency of exospheric sodium on Mercury, Icarus 216, 387-402.
    Wang, Y. -C., J. Müller, W. -H. Ip, and U. Motschmann (2011), A 3D hybrid simulation study of the electromagnetic field distributions in the lunar wake., Icarus 216, 415-425.
    Watson, K., B. C. Murray, and H. Brown (1961), The Behavior of Volatiles on the Lunar Surface. J. Geophys. Res. 66, 3033–3045.
    Watson, K., B. C. Murray, and H. Brown (1963), The stability of volatiles in the solar system, Icarus 1, 317.
    Wiens, R. C., D. S. Burnett, W. F. Calaway (1997), Sputtering products of sodium sulfate: implications for Io’s surface and for sodium-bearing molecules in the Io Torus, Icarus 128, 386–397.
    Wieser, M., S. Barabash, and Y. Futaana et al. (2009), Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space, Planet. Space Sci. 57, 2132–2134.
    Zappalà, V., Cellino, A., Dell’Oro, A., Paolicchi, P., 2002. Physical and dynam- ical properties of asteroid families. In: Bottke, W.F., Cellino, A., Paolic- chi, P., Binzel, R.P. (Eds.), Asteroids III. Univ. of Arizona Press, Tucson, pp. 619–631.
    Zeller, E. J., L. B. Ronca, and P. W. Levy (1966), Proton-Induced Hydroxyl Formation on the Lunar Surface, J. Geophys. Res. 71, 4855-4860.

    QR CODE
    :::