跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李曼君
Man-Chun Lee
論文名稱: 以電漿結合觸媒破壞去除NF3
指導教授: 張木彬
Moo-Been Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 94
中文關鍵詞: 結合觸媒填充床介電質電漿三氟化氮三氟化物
外文關鍵詞: combined plasma catalysis, packed bed, dielectric barrier discharge, plasma, PFC, NF3 conversion
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全氟化物因為具有穩定、安全、不自燃、低毒性以及常溫下不易起化學反應等優點,自從1930年代發明以來,被廣泛應用於工業生產,尤其是半導體製程。但是全氟化物中的氟原子與碳、氮、硫之間的分子鍵有很強的紅外光吸收能力,會造成溫室效應的日益嚴重。因此,如何有效控制溫室效應氣體的排放以減緩地球暖化趨勢,已成為世界各國之科學家努力研究的目標。
    以半導體業來說,他們面對PFCs的排放控制有幾個策略,包括採用替代的化學物、回收再利用以及破壞削減等方法。而相較於替代化學物之開發不易,回收再利用的高成本,破壞削減是現階段比較可行的方向。而破壞削減的方式有燃燒破壞、觸媒熱裂解以及電漿破壞。本研究選擇具有高溫(中心溫度可達3,000℃以上)且低耗能(相對於燃燒法)等特點的電漿技術,再結合有降低活化能特質的觸媒技術,期能獲得高效能且省能源的解決途徑。
    研究結果顯示在300 ℃下,Ni觸媒以及Pd觸媒分別在氧氣添加量為9.5%以及不加氧氣的條件下,對於轉化NF3都有良好的轉化率,如併用電漿,效果可再提升20 %以上;除此之外,加上電漿可以減緩觸媒經過時間轉化率下降的趨勢。能量效率方面,在此粗略估計實際應用在反應器的能量若能佔整個系統能量的18 %以上,電漿結合觸媒就會比單純使用觸媒具有競爭力。
    產物方面,無論是電漿破壞或者是觸媒轉化,主要產物皆為NO、NO2以及N2O,對照最終產物以及反應速率常數,大致推測NF3的氧化途徑,但是因為氟化物監測上的困難,所以不甚完整,仍待後續研究深入探討。


    Due to their stability, safety and low toxicity, PFCs are widely used in industrial production, especially semiconductor manufacturing processes. But molecular bonds between F and C、N、S have strong capacities on infrared rays absorption, they will aggravate global warming once emitted into the atmosphere. Thus, how to effectively control PFC emissions to alleviate the increasingly deteriorated phenomenon has become the focus of scientific researches.
    In addition to increasing the efficiency of utilizing PFCs, the semiconductor industry applies alternative chemicals, recovery/recycle systems and abatement techniques. Owing to the difficulty in development of alternative chemicals and high cost in recovery/recycle systems, the abatement techniques have become the primary way to control PFC emissions at present stage. This study investigates the effectiveness of plasma technology which has high temperature (central temperature 3,000 ℃ up) and low energy consumption (compare to burning), combined with catalysis technology which can lower activation energy for NF3 removal.
    Results of the study indicate that both Ni and Pd catalyst are good at destroying and removing NF3 in 300 ℃. Destruction and removal efficiency of NF3 can be enhanced by more than 20 % if combined with plasma. Besides, poison of the catalysts can be alleviated with plasma on. As for the energy efficiency, if more than 18 % of the input energy is devoted to the reactor, plasma combined with catalyst has a higher energy efficiency compared with catalyst-only cases.
    Major products detected in this study include are NO、NO2 and N2O for both plasma and catalysis destruction of NF3. Due to the difficulty of fluoride measurement, products analysis is not complete in this investigation, further studies are needed to better understand the reaction mechanisms.

    目錄 圖目錄 IV 表目錄 VI 一、前言 1 研究緣起 1 研究目的 2 二、文獻回顧 3 2.1 全氟化物特性及應用 3 2.2 PFCs的排放管制及半導體業所採策略 8 2.3 電漿原理及應用 21 2.3.1 電漿原理 21 2.3.2 電漿應用 24 2.4 觸媒催化與應用 25 2.4.1 觸媒催化原理 25 2.4.2 觸媒應用 25 2.5 NF3的特性及應用 26 2.5.1 NF3特性 27 2.5.2 NF 3應用 31 2.5.3 NF 3的破壞去除研究 32 2.6 NF3在電漿中的轉化反應 33 三、實驗設備與方法 44 3.1 實驗設備 44 3.1.1 氣體供應系統 44 3.1.2 實驗參數控制系統 45 3.1.3 介電質放電系統 45 3.1.4 最終產物鑑定系統 49 3.2 實驗方法 49 3.2.1 介電質放電 50 3.2.2 填充床式 51 3.2.3單純觸媒升溫 52 3.2.4 觸媒結合電漿(室溫及高溫) 52 四、結果與討論 56 4.1介電質放電轉化NF3 56 4.1.1 Ar添加濃度對於NF3去除效果的影響 56 4.1.2 O2添加濃度對於NF3去除效果的影響 58 4.1.3 H2添加濃度對於NF3去除效果的影響 59 4.1.4 頻率對於NF3去除效果的影響 61 4.2 填充床式轉化NF3 62 4.2.1 O2添加濃度對於NF3去除效果的影響 63 4.2.2 H2添加濃度對於NF3去除效果的影響 64 4.3 單獨觸媒處理NF3 65 4.4電漿結合觸媒床轉化NF3 68 4.4.1 O2添加濃度對於NF3去除效果的影響(室溫) 68 4.4.2電漿結合觸媒的轉化效果 69 4.5 最終產物鑑定 71 4.5.1 介電質放電圖譜 71 4.5.2 填充床放電圖譜 74 4.5.3 觸媒床放電圖譜 76 4.5.4 各系統產物整理 80 4.6 能量效率的比較 82 4.7 氧化反應路徑之推估 83 五、結論 86 六、建議 87 七、參考文獻 88 圖目錄 圖2-1 PFC低溫回收流程 13 圖2-2 BOC Edward發展之TPU系統 16 圖2-3 日本Hiatchi公司發展PFCs處理設備CDS原型 18 圖3-2 介電質反應器 48 圖4-1 AR添加濃度對於NF3去除效果的影響 56 圖4-2 介電質放電中O2的添加濃度對於NF3去除效果的影響 59 圖4-3 介電質放電中H2的添加濃度對於NF3去除效果的影響 60 圖4-4 介電質放電中放電頻率對於功率的影響 61 圖4-5 介電質放電中放電頻率對於NF3去除率的影響 62 圖4-6 填充床中O2添加濃度對於NF3去除效果的影響 63 圖4-7 填充床中H2添加濃度對於NF3去除效果的影響 64 圖4-8 Ni觸媒轉化NF3 65 圖4-9 Pd觸媒轉化NF3 66 圖4-10 Ni及Pd觸媒在300 ℃時, NF3轉化率隨時間之變化 67 圖4-11 O2添加濃度對Ni觸媒轉化NF3效率的影響 68 圖4-12 O2添加濃度對Pd觸媒轉化NF3效率的影響 69 圖4-13 Pd觸媒在140℃下未施加電漿vs.施加電漿下的NF3轉化率 70 圖4-14 未添加氧氣以及氫氣的圖譜 71 圖4-15 未添加氧氣以及氫氣的DBD放電圖譜 72 圖4-16 以氧氣當平衡氣體的DBD放電圖譜 73 圖4-17 氣流中添加2%的氫氣DBD放電圖譜 74 圖4-18 氣流中添加9.5%的氧氣Al2O3床放電圖譜 75 圖4-19 氣流中添加0.5%的氫氣Al2O3床放電圖譜 76 圖4-20氣流中添加1.0%的氧氣經過Ni觸媒床之放電圖譜 77 圖4-21氣流中添加9.5%的氧氣經過Ni觸媒床圖譜 78 圖4-22氣流經過Pd觸媒床圖譜(300℃) 79 圖4-23氣流中添加9.5%的氧氣經過NI觸媒床之放電圖譜 80 圖4-24氣流經過Pd觸媒床之放電圖譜 80 圖4-25 NF3之氧化途徑(O2/Ar/N2) 85 表目錄 表2-1 全氟化物大氣中的濃度值、存活年限及GWP100比較 3 表2-2 半導體製程中使用PFCs氣體的種類以及流量 6 表2-3 熱電漿與非熱電漿之特性 23 表2-5 NF3—N2系統: 34 表2-6 NF3—Ar系統: 37 表2-7 NF3—N2—O2系統: 37 表2-8 NF3—N2—H2系統: 40 表3-1 鋼瓶氣體種類、濃度及來源 45 表3-2 氧化鋁擔體的性質 54 表4-1 各系統的產物整理 81 表4-2 能量效率的比較 83

    A. Seeley, P. Chandler, S. Cottle, and P. Mawle, “Effective PFC Gas Abatement in a Production Environment”, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK, 1997.
    B. Chapman, “Glow Discharge Processes”, A Wiley-Interscience Publication, Canada, pp. 297, 1980.
    B. G. Flippo and R. F. Jones, “Abatement of Fluorine Emissions Utilizing an ATMI CDO Model 863 with Steam Injection”, Journal of the Semiconductor Safety Association, 1, 2001.
    E. Vileno, M. K. Leclair, S. L. Suib, M. B. Cutlip, Francis S. Galasso and S. J. Hardwick, “Thermal Decomposition of NF3 with Various Oxides”, Chem. Mater.,Vol. 8, pp. 1217, 1996.
    G. C. Bond, “Heterogeneous Catalysis Principles and Applications”, 2nd Ed, Oxford University Press, New York, pp. 29, 1987.
    G. G. Michael, R. K. Hutcherson, A. K. Richard, B. Russel, W. I. Michael, R. Randy, E. Scott, Beck, G. Mark, P. Rick and R. G. Ridgeway, “Gaseous Effluent Treatment Using a Pulsed Corona Discharge”, NCRADA-NSWCDD-94-006, pp. 124.
    J. S. Chang, G. Kostov, T. Yamamoto, Y. Okayasu and T. Iwaizumi, “Remaval of NF3 from Semiconductor-Process Flue Gases by Tandem Packed-Bed Plasma and Adsorbent Hybrid Systems”, IEEE Transactions on Industry Applications, Vol. 36, No. 5, pp. 1251, September/October 2000.
    L. C. Pruette, S. M. Karecki, and R. Reif, “Evaluation of Trifluoroacetic Anhydride as an Alternative Plasma Enhanced Chemical Vapor Deposition Chamber Clean Chemistry”, Journal of Vaccum Science & Technology, Vol. A16, No. 3, pp. 1577, 1998.
    L.F. Phillips and I. Schiff, “Mass-spectrometric Studies of Atomic Reactions. V. The reaction of Nitrogen Atoms with NO2”, J. Chem. Phys., Vol. 42, pp. 3171, 1965.
    L. Marinelli, W. Worth, “Global Warming: A White Paper on the Science, Policies and Control Technologies that Impact the U.S. Semiconductor Industry”, Technology Transfer # 93112074A-TR SEMATECH, 1994.
    M. C. Hung, C. L. Yang, P. H. Wu, S. M. Pan and Y. S. Huang, “Reduction of NF3 Usage for Optimal AMAT HDP Clean Recipe”, ISESH 8th Annual Conference, Kenting, Taiwan, 2001.
    M. Fujimi, G. Suwa and K. Nagano, “PFC Emissions Reductions in the Semiconductor Operations Division at Seiko Epson Corporation”, ISESH 8th Annual Conference, Kenting, Taiwan, 2001.
    P. M. Scott, K. F. Preston, R. J. Andersen and L.M. Quick, “The Reaction of the Electronically Excited Oxygen Atom O(1D2) with Nitrous Oxide”, Can. J. Chem., Vol. 49, pp. 1808, 1971.
    R. A. Levy, V. B. Zaitsev, K. Aryusook, C. Ravindranath, V. Sigal, A. Misra, S. Kesari, D. Rufin, J. Sees, and L. Hall, “Investigation of CF3I as an Environmental Benign Dielectric Etchant”, Journal of Materials Research, Vol. 13, No. 9, pp. 2643, 1998.
    R. Dorai, “Modeling of Plasma Remediation of NOx Using Global Kinetic Models Accounting for Hydrocarbons”, Thesis for the Degree of Master of Science in Chemical Engineering, University of Illinois at Urbana-Champaign, 2000.
    R. S. Brown and J. A. Rossin, “Catalytic Process for Control of PFC Emissions”, Semiconductor International, June 2001.
    S. E. Paulson, J. J. Orlando, G.S. Tyndall and J.G. Calvert, “Rate Coefficients for the Reactions of O(3P) with Selected Biogenic Hydrocarbons”, Int. J. Chem. Kinet., Vol. 27, pp. 997, 1995.
    S. T. Hitachi and S. K. Hitachi, “Catalytic Decomposition of PFC”, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998.
    S. Ibuka, “Japan’s Use of ClF3”, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998.
    S. J. Yu and M. B. Chang, “Oxidative Conversion of PFC via Processing with Dielectric Barrier Discharges”, Plasma Chemistry and Plasma Processing, Vol. 21, No. 3, pp. 311, 2001.
    S. M. Karecki, L. C. Pruette, and R. Reif, “Reduction of Global Warming Emissions in a Dielectric Etch Application through Use of Iodofluorocarbon”, A Partnership for PFC Emissions Reductions, Technical Present, Texas, 1998.
    T. Yamamoto, J. S. Chang and K. Kostov, Y. Okayasu, T. Kato, T. Iwaizumi, and K. Yoshimura, “NF3 Treatment by Ferroelectric Packd-Bed Plasma Reactor”, J. Adv. Oxid. Technol., Vol. 4, No. 4, pp. 454, 1999.
    T. Yamamoto, M. Koichi, T. Ikuo, O. Astushi, Masaharu, M. Monika, and P. Graciela, “Catalysis-Assisted Plasma Technology for Carbon Tetrachloride Destruction”, IEEE Transactions on Industry Applications, Vol. 32, No. 1, pp. 100, January/February 1996.
    Y. F. Wang, W. J. Lee, C.Y. Dhen, and L.T. Hsieh, “Decomposition of Dichlorodifluoromethane by Adding Hydrogen in a Cold Plasma System”, Environmental Science & Technology, Vol. 33, No. 13, pp. 2234, 1999.
    Y. P. Raizer, J. E. Allen and V. I. Kisin, “Gas Dsicharge Physics”, ISBN: 3-540-19462-2 Springer-Verlag Berlin Heidelberg Present, Texas, 1991.
    李定粵,觸媒的原理與應用,正中出版社,台北,1991。
    原著:田中正之,譯者:陳宏政,「溫暖化的地球」,書泉出版社,台北市,1995。
    周崇光,「積體電路製程尾氣控制技術之應用與發展」,2000產業環保工程實務技術研討會,2000。
    游生任,「以介電質放電技術轉化四氟甲烷及六氟乙烷之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,2000。
    王麒麟、李文智、陳志勇、陳志維、蔡朋枝、蔡政賢、林信一和方國權,「以高周波電漿分解三氟化氮」, 第十八屆空氣污染控制研討會,高雄,2001。
    吳關佑,「線管式與填充床式電漿反應器破壞SF6之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,2002。
    http://140.96.170.24/idb/tech/33/5.html吳榮泰經理、葉銘鵬、王守芃、王榮輝工研院工安衛中心、羅俊光教授,國立清華大學原子科學研究所 紅外光技術於半導體廠環境監測應用
    http://www.moonjeep.net/ecommerce/n.html N—夢之譜專業電子商務辭典
    物質安全資料表,序號346,工研院工安衛中心。

    QR CODE
    :::