| 研究生: |
李曼君 Man-Chun Lee |
|---|---|
| 論文名稱: |
以電漿結合觸媒破壞去除NF3 |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 結合觸媒 、填充床 、介電質 、電漿 、三氟化氮 、三氟化物 |
| 外文關鍵詞: | combined plasma catalysis, packed bed, dielectric barrier discharge, plasma, PFC, NF3 conversion |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全氟化物因為具有穩定、安全、不自燃、低毒性以及常溫下不易起化學反應等優點,自從1930年代發明以來,被廣泛應用於工業生產,尤其是半導體製程。但是全氟化物中的氟原子與碳、氮、硫之間的分子鍵有很強的紅外光吸收能力,會造成溫室效應的日益嚴重。因此,如何有效控制溫室效應氣體的排放以減緩地球暖化趨勢,已成為世界各國之科學家努力研究的目標。
以半導體業來說,他們面對PFCs的排放控制有幾個策略,包括採用替代的化學物、回收再利用以及破壞削減等方法。而相較於替代化學物之開發不易,回收再利用的高成本,破壞削減是現階段比較可行的方向。而破壞削減的方式有燃燒破壞、觸媒熱裂解以及電漿破壞。本研究選擇具有高溫(中心溫度可達3,000℃以上)且低耗能(相對於燃燒法)等特點的電漿技術,再結合有降低活化能特質的觸媒技術,期能獲得高效能且省能源的解決途徑。
研究結果顯示在300 ℃下,Ni觸媒以及Pd觸媒分別在氧氣添加量為9.5%以及不加氧氣的條件下,對於轉化NF3都有良好的轉化率,如併用電漿,效果可再提升20 %以上;除此之外,加上電漿可以減緩觸媒經過時間轉化率下降的趨勢。能量效率方面,在此粗略估計實際應用在反應器的能量若能佔整個系統能量的18 %以上,電漿結合觸媒就會比單純使用觸媒具有競爭力。
產物方面,無論是電漿破壞或者是觸媒轉化,主要產物皆為NO、NO2以及N2O,對照最終產物以及反應速率常數,大致推測NF3的氧化途徑,但是因為氟化物監測上的困難,所以不甚完整,仍待後續研究深入探討。
Due to their stability, safety and low toxicity, PFCs are widely used in industrial production, especially semiconductor manufacturing processes. But molecular bonds between F and C、N、S have strong capacities on infrared rays absorption, they will aggravate global warming once emitted into the atmosphere. Thus, how to effectively control PFC emissions to alleviate the increasingly deteriorated phenomenon has become the focus of scientific researches.
In addition to increasing the efficiency of utilizing PFCs, the semiconductor industry applies alternative chemicals, recovery/recycle systems and abatement techniques. Owing to the difficulty in development of alternative chemicals and high cost in recovery/recycle systems, the abatement techniques have become the primary way to control PFC emissions at present stage. This study investigates the effectiveness of plasma technology which has high temperature (central temperature 3,000 ℃ up) and low energy consumption (compare to burning), combined with catalysis technology which can lower activation energy for NF3 removal.
Results of the study indicate that both Ni and Pd catalyst are good at destroying and removing NF3 in 300 ℃. Destruction and removal efficiency of NF3 can be enhanced by more than 20 % if combined with plasma. Besides, poison of the catalysts can be alleviated with plasma on. As for the energy efficiency, if more than 18 % of the input energy is devoted to the reactor, plasma combined with catalyst has a higher energy efficiency compared with catalyst-only cases.
Major products detected in this study include are NO、NO2 and N2O for both plasma and catalysis destruction of NF3. Due to the difficulty of fluoride measurement, products analysis is not complete in this investigation, further studies are needed to better understand the reaction mechanisms.
A. Seeley, P. Chandler, S. Cottle, and P. Mawle, “Effective PFC Gas Abatement in a Production Environment”, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK, 1997.
B. Chapman, “Glow Discharge Processes”, A Wiley-Interscience Publication, Canada, pp. 297, 1980.
B. G. Flippo and R. F. Jones, “Abatement of Fluorine Emissions Utilizing an ATMI CDO Model 863 with Steam Injection”, Journal of the Semiconductor Safety Association, 1, 2001.
E. Vileno, M. K. Leclair, S. L. Suib, M. B. Cutlip, Francis S. Galasso and S. J. Hardwick, “Thermal Decomposition of NF3 with Various Oxides”, Chem. Mater.,Vol. 8, pp. 1217, 1996.
G. C. Bond, “Heterogeneous Catalysis Principles and Applications”, 2nd Ed, Oxford University Press, New York, pp. 29, 1987.
G. G. Michael, R. K. Hutcherson, A. K. Richard, B. Russel, W. I. Michael, R. Randy, E. Scott, Beck, G. Mark, P. Rick and R. G. Ridgeway, “Gaseous Effluent Treatment Using a Pulsed Corona Discharge”, NCRADA-NSWCDD-94-006, pp. 124.
J. S. Chang, G. Kostov, T. Yamamoto, Y. Okayasu and T. Iwaizumi, “Remaval of NF3 from Semiconductor-Process Flue Gases by Tandem Packed-Bed Plasma and Adsorbent Hybrid Systems”, IEEE Transactions on Industry Applications, Vol. 36, No. 5, pp. 1251, September/October 2000.
L. C. Pruette, S. M. Karecki, and R. Reif, “Evaluation of Trifluoroacetic Anhydride as an Alternative Plasma Enhanced Chemical Vapor Deposition Chamber Clean Chemistry”, Journal of Vaccum Science & Technology, Vol. A16, No. 3, pp. 1577, 1998.
L.F. Phillips and I. Schiff, “Mass-spectrometric Studies of Atomic Reactions. V. The reaction of Nitrogen Atoms with NO2”, J. Chem. Phys., Vol. 42, pp. 3171, 1965.
L. Marinelli, W. Worth, “Global Warming: A White Paper on the Science, Policies and Control Technologies that Impact the U.S. Semiconductor Industry”, Technology Transfer # 93112074A-TR SEMATECH, 1994.
M. C. Hung, C. L. Yang, P. H. Wu, S. M. Pan and Y. S. Huang, “Reduction of NF3 Usage for Optimal AMAT HDP Clean Recipe”, ISESH 8th Annual Conference, Kenting, Taiwan, 2001.
M. Fujimi, G. Suwa and K. Nagano, “PFC Emissions Reductions in the Semiconductor Operations Division at Seiko Epson Corporation”, ISESH 8th Annual Conference, Kenting, Taiwan, 2001.
P. M. Scott, K. F. Preston, R. J. Andersen and L.M. Quick, “The Reaction of the Electronically Excited Oxygen Atom O(1D2) with Nitrous Oxide”, Can. J. Chem., Vol. 49, pp. 1808, 1971.
R. A. Levy, V. B. Zaitsev, K. Aryusook, C. Ravindranath, V. Sigal, A. Misra, S. Kesari, D. Rufin, J. Sees, and L. Hall, “Investigation of CF3I as an Environmental Benign Dielectric Etchant”, Journal of Materials Research, Vol. 13, No. 9, pp. 2643, 1998.
R. Dorai, “Modeling of Plasma Remediation of NOx Using Global Kinetic Models Accounting for Hydrocarbons”, Thesis for the Degree of Master of Science in Chemical Engineering, University of Illinois at Urbana-Champaign, 2000.
R. S. Brown and J. A. Rossin, “Catalytic Process for Control of PFC Emissions”, Semiconductor International, June 2001.
S. E. Paulson, J. J. Orlando, G.S. Tyndall and J.G. Calvert, “Rate Coefficients for the Reactions of O(3P) with Selected Biogenic Hydrocarbons”, Int. J. Chem. Kinet., Vol. 27, pp. 997, 1995.
S. T. Hitachi and S. K. Hitachi, “Catalytic Decomposition of PFC”, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998.
S. Ibuka, “Japan’s Use of ClF3”, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998.
S. J. Yu and M. B. Chang, “Oxidative Conversion of PFC via Processing with Dielectric Barrier Discharges”, Plasma Chemistry and Plasma Processing, Vol. 21, No. 3, pp. 311, 2001.
S. M. Karecki, L. C. Pruette, and R. Reif, “Reduction of Global Warming Emissions in a Dielectric Etch Application through Use of Iodofluorocarbon”, A Partnership for PFC Emissions Reductions, Technical Present, Texas, 1998.
T. Yamamoto, J. S. Chang and K. Kostov, Y. Okayasu, T. Kato, T. Iwaizumi, and K. Yoshimura, “NF3 Treatment by Ferroelectric Packd-Bed Plasma Reactor”, J. Adv. Oxid. Technol., Vol. 4, No. 4, pp. 454, 1999.
T. Yamamoto, M. Koichi, T. Ikuo, O. Astushi, Masaharu, M. Monika, and P. Graciela, “Catalysis-Assisted Plasma Technology for Carbon Tetrachloride Destruction”, IEEE Transactions on Industry Applications, Vol. 32, No. 1, pp. 100, January/February 1996.
Y. F. Wang, W. J. Lee, C.Y. Dhen, and L.T. Hsieh, “Decomposition of Dichlorodifluoromethane by Adding Hydrogen in a Cold Plasma System”, Environmental Science & Technology, Vol. 33, No. 13, pp. 2234, 1999.
Y. P. Raizer, J. E. Allen and V. I. Kisin, “Gas Dsicharge Physics”, ISBN: 3-540-19462-2 Springer-Verlag Berlin Heidelberg Present, Texas, 1991.
李定粵,觸媒的原理與應用,正中出版社,台北,1991。
原著:田中正之,譯者:陳宏政,「溫暖化的地球」,書泉出版社,台北市,1995。
周崇光,「積體電路製程尾氣控制技術之應用與發展」,2000產業環保工程實務技術研討會,2000。
游生任,「以介電質放電技術轉化四氟甲烷及六氟乙烷之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,2000。
王麒麟、李文智、陳志勇、陳志維、蔡朋枝、蔡政賢、林信一和方國權,「以高周波電漿分解三氟化氮」, 第十八屆空氣污染控制研討會,高雄,2001。
吳關佑,「線管式與填充床式電漿反應器破壞SF6之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,2002。
http://140.96.170.24/idb/tech/33/5.html吳榮泰經理、葉銘鵬、王守芃、王榮輝工研院工安衛中心、羅俊光教授,國立清華大學原子科學研究所 紅外光技術於半導體廠環境監測應用
http://www.moonjeep.net/ecommerce/n.html N—夢之譜專業電子商務辭典
物質安全資料表,序號346,工研院工安衛中心。