| 研究生: |
周佳樺 Chia-Hua Chou |
|---|---|
| 論文名稱: |
不同負載模式對錫-銀-銅無鉛銲錫接點低週疲勞行為之影響 Low Cycle Fatigue Behavior of Lead-Free Sn-Ag-Cu Solder Joint under Various Loading Modes |
| 指導教授: |
林志光
Chih-Kuang (Jack) Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 低週疲勞 、無鉛銲錫 |
| 外文關鍵詞: | low-cycle fatigue, Lead-free solder |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在探討0 度(純拉伸負載模式)、45 度(混合負載模式)以及90 度(純剪力負載模式)三種不同受力模式對Sn-3.5Ag-0.5Cu 無鉛銲錫接點試片低週疲勞行為的影響。並進一步和文獻中塊材型式的試片在相同條件下所測得的實驗結果做比較。此外,亦利用掃描式電子顯微鏡(SEM)觀察表面裂縫與破斷面,以了解此款無鉛銲錫接點之疲勞破裂機制。
實驗結果顯示,在各種位移振幅、負載模式的試驗條件組合中,von Mises 等效應變可以有效的將三種不同負載模式下的低週疲勞壽命做有效的統合。在本實驗中所使用臨界平面觀念為主的KBM 參數以及使用von Mises 等效應變之Basquin-Coffin-Manson 方程式都能針對在不同負載模式下的低週疲勞行為做出很好的整合性描述。將接點試片在0 度受力模式下和塊材在相同情形下作等效應變-壽命曲線分析比較,發現在低應變振幅下接點有比較好的疲勞壽命,但在高應變振幅下則得到相反的結果。銲點試片和塊材試片所顯示的應力振幅下降曲線趨勢非常相近。
由SEM 觀察得知,微小的裂縫起始於銅片和錫球之間介面處的某些微孔洞所在位置。微裂縫以及微孔洞的相互連結是導致疲勞裂縫生成與成長的主因。而在不同負載模式下,試片斷裂的位置都位於銅片和錫球間的介面處,這是因為該介面為試片抵抗疲勞損害最弱的地方。
The purpose of this study is to investigate the LCF properties of solder joints made of a promising lead-free solder alloy, Sn-3.5Ag-0.5Cu. Displacement-controlled LCF tests were conducted on the solder joint specimens under various loading conditions, including purely axial loading, purely shear loading and mixed-mode loading. The effect of multiaxial loading on the fatigue life and fracture mode was characterized. In addition, the difference in the uniaxial LCF life between solder joints and bulk solders was discussed by making a comparison with a previous study.
Experimental results showed the von Mises equivalent strain was a superior parameter to the maximum normal strain and the maximum shear strain in correlating the LCF life of solder joints under various loading modes. Several fatigue models were applied to describe the LCF lives of the given solder joint specimens subjected to different modes of loading. Among the applied approaches, KBM parameter and the von Mises equivalent strain provided the best unified correlation with the fatigue life of solder joint at all given loading modes through a single power law or a double law relationship.
Although a similar trend of load drop curve to that of the bulk solder was found for the solder joint, the LCF behavior under purely axial loading between the solder joint and bulk solder was different. Based on the fractography analysis results, the loading mode did not have a significant influence on the cracking path of the solder joint, as the fatigue fracture always occurred at the interface between the solder and copper pad for all the given loading modes.
1. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials
Science and Engineering, Vol. 27, 2000, pp. 95-141.
2. W. J. Plumbridge, “Structural Integrity in Electronics,” Fatigue and Fracture of
Engineering Materials and Structures, Vol. 27, 2004, pp. 723-734.
3. Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center
for Manufacturing Sciences, Michigan, 1997.
4. E. P. Wood, “In Search of New Lead-Free Electronic Solders,” Journal of Electronic
Materials, Vol. 23, 1994, pp. 709-714.
5. B. Richards and K. Nimmo, “An Analysis of the Current Status of Lead-Free
Soldering: Update 2000,” UK Department of Trade and Industry, London, 2000.
6. M. R. Harrison and J. H. Vincent, “IDEALS: Improved Design and Environment
Aware Manufacturing of Electrics Assemblies by Lead-Free Solderings,” pp. 98-104
in Proceeding of the 12th Microelectronics and Packing Conference, IMAPS Europe,
Cambridge, 1999.
7. Report on Research and Development on Lead-Free Soldering, Japan Electronic
Industry Development Association, Tokyo, 2000.
8. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process
Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu
Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
6. M. McCormack and S. Jin, “Improve Mechanical Properties in New, Pb-Free Solder
Alloys,” Journal of Electronic Materials, Vol. 23, 1994, pp. 715-720.
10. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy
with Superior Mechanical-Properties,” Applied Physics Letters, Vol. 63, 1993, pp.
15-17.
11. IPC Roadmap: A guide for Assembly of Lead-Free Electronics, 4th Draft, IPC,
Northbrook, IL, June, 2000.
12. F. Ochoa, J. J. Williams, and N. Chawla, “Effects of Cooling Rate on the
Microstructure and Tensile Behavior of a Sn-3.5wt.%Ag Solder,” Journal of
Electronic Materials, Vol. 32, 2003, pp. 1414-1420.
13. 菅沼 克昭, 鉛 付 技術, 工業調查會, 日本, 2003. (日文)
14. D. W. Henderson, T. Gosselin, and A. Sarkhel, “Ag3Sn Plate Formation in the
Soldification of Near Eutectic Sn-Ag-Cu Alloys,” Journal of Material Research, Vol.
17, 2002, pp. 2775-2778.
15. L. Ye, Z. H. Lai, J. Liu, and A. Thoen, “Microstructure Investigation of
Sn-3.5Ag-0.5Cu and Sn-3.5Ag-0.5Cu-0.5Bi Lead-Free Solders,” Soldering and
Surface Mount Technology, Vol. 13, 2001, pp. 16-20.
16. W. J. Plumbridge, C. R. Gagg, and S. Peters, “The Creep of Lead-Free Solders at
Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, 2001, pp.
1178-1183.
17. S. G. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Stress Relaxation
Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic
Materials, Vol. 30, 2001, pp. 1197-1205.
18. D. J. Xie and Y. C. Chan, “Fatigue Life Estimation of Surface Mount Solder Joints,”
IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.
19, 1996, pp. 669-678.
19. X. Q. Shi, H. L. J. Pang, W. Zhou, and Z. P. Wang, “Low Cycle Fatigue Analysis of
Temperature and Frequency Effects in Eutectic Solder Alloy,” International Journal
of Fatigue, Vol. 22, 2000, pp. 217-228.
20. X. Chen, J. Song, and K. S. Kim, “Low Cycle Fatigue Life Prediction of 63Sn-37Pb
Solder Under Proportional and Non-Proportional Loading,” International Journal of
Fatigue, Vol. 28, 2006, pp. 757-766.
21. J. H. L. Pang, B. S. Xiong, and T. H. Low, “Low Cycle Fatigue of lead Free
99.3Sn-0.7Cu Solder Alloy,” International Journal of Fatigue, Vol. 26, 2004, pp.
865-872.
22. H.-T. Lee, H.-S. Lin, C.-S. Lee, and P.-W. Chen , “Reliability of Sn-Ag-Sb Lead-Free
Solder Joints,” Materials Science and Engineering A, Vol. 407, 2005, pp. 36-44.
23. J. J. Sundelin, S. T. Nurmi, T. K. Lepisto, and E. O. Ristolainen, “Mechanical and
Microstructural Properties of SnAgCu solder Joints,” Materials Science and
Engineering A, Vol. 420, 2006, pp. 55-62.
24. C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, “Comparison of Isothermal
Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders,”
Materials Science and Engineering A, Vol. 394, 2005, pp. 20-27.
25. T.-S. Park and S.-B. Lee, “Low Cycle Fatigue Testing of Ball Grid Array Solder Joints under Mixed-Mode Loading Conditions,” Journal of Electronic Packaging,
Vol. 127, 2005, pp. 237-244.
26. A. U. Telang and T. R. Bieler, “Characterization of Microstructure and Crystal
Orientation of the Tin Phase in Single Shear Lap Sn-3.5Ag Solder Joint Specimens,”
Scripta Materialia, Vol. 52, 2005, pp. 1027-1031.
27. B. L. Chen and G. Y. Li, “Influence of Sb on IMC Growth in Sn-Ag-Cu-Sb Pb-Free
Solder Joints in Reflow Process,” The Solid Films, Vol. 462, 2004, pp. 395-401.
28. X. Deng, R. S. Sidhu, P. Johnson, and N. Chawla, “Influence of Reflow and Thermal
Aging on the Shear Strength and Fracture Behavior of Sn-3.5Ag Solder Cu Joints,”
Metallurgial and Materials Transactions A, Vol. 36A, 2005, pp. 55-64.
29. H. T. Lee and Y. H. Lee, “Adhesive Strength and Tensile Fracture of Ni Particle
Enhanced Sn-Ag Composite Solder Joints,” Material Science and Engineering A, Vol.
419, 2006, pp. 172-180.
30. W. W. Lee, L. T. Nguyen, and G. S. Selvaduray, “Solder Joint Fatigue Models:
Review and Applicability to Chip Scale Packages,” Microelectronics Reliability, Vol.
40, 2000, pp. 231-244.
31. J. Liang, N. Dariavach, G. Barr, and Z. Fang, “Effect of Strain Rates and Biaxial
Stress Conditions on Plastic Yielding and Flow Stress of Solder Alloys,” Journal of
Electronic Materials, Vol. 35, 2006, pp. 372-379.
32. X. Chen, D. Jin, M. Sakane, and T. Yamamoto, “Multiaxial Low-Cycle Fatigue of
63Sn-37Pb Solder,” Journal of Electronic Materials, Vol. 34, 2005, pp. l1-l6.
33. X. Chen, J. Song, and K. S. Kim, “Low Cycle Fatigue Life Prediction of 63Sn-37Pb
Solder under Uniaxial and Torsional Loading,” International Journal of Fatigue, Vol.
28, 2006, pp. 767-776.
34. L. F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile
Metal,” Transactions of ASME, Vol. 76, 1954, pp. 931-950.
35. S. S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat
Transfer Symposium, University of Michigan Engineering Research Institute, 1953,
pp. 9-75.
36. H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, Vol. 9, 1986, pp. 423-432.
37. M. W. Brown and K. J. Miller, “A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions,” Proceedings of the Institution of Mechanical Engineers,
Vol. 187, No. 65, 1973, pp. 745-755.
38. F. A. Kandil, M. W. Brown, and K. J. Miller, “Biaxial Low-Cycle Fatigue Fracture of
316 Stainless Steel of Evaluated Temperatures,” pp. 203-210 in Mechanical Behavior
and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, The
Metals Society, London, 1982.
39. J. D. Morrow , “Cyclic Plastic Strain Energy and Fatigue of Metals,” pp. 45-87 in
Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, American Society
for Testing and Materials, Philadephia, USA, 1965,
40. B. L. Lee, K. S. Kim, and K. M. Nam, “Fatigue Analysis under Variable Amplitude
Loading Using an Energy Parameter,” International Journal of Fatigue, Vol. 25,
2003, pp.621-631.
41. X. Chen, S. Xu, and D. Haung, “Critical Plane Strain Energy Density Criterion of
Multi Axial Low Cycle Fatigue Life under Non-Proportional Loading,” Fatigue and
Fracture Engineering of Materials and Structures, Vol. 22, 1999, pp.679-686.
42. C.-M. Huang, “Low-Cycle Fatigue of Sn-3.5Ag-0.5Cu Lead-Free Solder under
Various Loading Conditions,” M.S. Thesis, National Central University, Jhong-Li,
Taiwan, 2005.
43. M. E. Loomans and M. E. Fine, “Tin-Silver-Copper Eutectic Temperature and
Composition,” Metallurgical and Materials Transactions A, Vol. 31A, 2000, pp.
1155-1162.
44. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A.
Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder
Alloys,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1122-1136.