| 研究生: |
潘柏宏 Bo-Hong Pan |
|---|---|
| 論文名稱: |
聚苯胺金屬奈米複合管的合成及鑑定 Synthesis of polyaniline gold and polyaniline silver bilayer nanotubes |
| 指導教授: |
楊思明
Sze-Ming Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 金 、奈米管 、聚苯胺 、銀 |
| 外文關鍵詞: | Polyaniline, Gold, Silver, Nanotubes |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究利用聚苯胺具有還原的特性,以聚苯胺奈米管將金或銀離子還原,可製備出聚苯胺金及聚苯胺銀複合奈米管。氧化鋁膜將聚苯胺電化學合成為管狀結構,再以聚苯胺管浸置於HAuCl4及AgNO3溶液中,即可得到聚苯胺金複合管及聚苯胺銀複合管,再利用NMP將聚苯胺完全溶解即可得到金及銀奈米管。本研究也利用無電電鍍的方法成功製備出聚苯胺鈀奈米複合管,將聚苯胺管浸置於SnCl2-PdCl2混合溶液中,可製備出聚苯胺鈀奈米複合管。藉由SEM觀察聚苯胺奈米管及奈米金屬管的表面型態。且利用EDX分析確定為其金、銀或鈀管。以TEM來觀察合成的聚苯胺金屬複合管,並由電子選區繞射得知在氧化鋁膜中形成的聚苯胺管中沉積之金管延[100]方向成長而銀管延[110]方向成長。
本研究亦採用聚碳酸酯膜為模板,由於管壁性質和氧化鋁膜不同所以所製備的聚苯胺管會有所差異,因此在還原金及銀時會有不同的現象。氧化鋁膜製備的聚苯胺管孔道較均勻因而沉積金、銀、鈀時可形成結晶度高之奈米管。聚碳酸酯膜的孔道不規則形成的聚苯胺型態也不規則,因而只能在局部區域形成金或銀粒子的沉積。
Abstract
Polyaniline gold/silver bilayer nanotubes are synthesized by reduction of aqueous HAuCl4 and AgNO3 with polyaniline. Polyaniline nanotubes of uniform size are synthesized inside the channels of anodic alumina membrane. After dissolving anodic alumina with NaOH and polyaniline with NMP, the remaining gold and silver tubes can be obtained. We also synthesized polyaniline palladium bilayer nanotubes by electroless plating of Pd in SnCl2-PdCl2 solution. SEM photographs show the formation of polyaniline gold/silver/palladium bilayer nanotubes. EDX results confirm the formation of metal tubes. TEM photographs show the formation of bilayer tubes and selected area electron diffraction results indicate gold and silver nanotubes grow along the [100],[110] respectively.
In this study, we also use polycarbonate track-etched membrane as templates to synthesize polyaniline nanotubes. Owing to different characteristics of the two templates, the morphology of the polyaniline tubes synthesized in them are different. Polyaniline tubes firmed in channels of anodic alumina membrane are conform gold, silver and palladium deposited are highly crystalline nanotubes. Polyaniline tubes formed in polycarbonate membrane are not uniform, hence only gold or silver particles are deposited on local areas.
參考文獻
1. R. M. Baughman, J. L. Bredas, R. L. Elsenbaumer, and L. W. Shacklette, Chem. Rev., 1982, 82, 209.
2. A. F. Diaz and K. K. Kanazdwd, in “Extended Linear Chain Compounds” (G. S. Miller, ed.), Plenum, New York, 1982, p3.
3. K. Kaneto, S. Ura, K. Yoshino, and Y. Inuishi, Jap. J. of App. Phys., 1984, 23, 189.
4. A. G. MavDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
5. H. Letheby, J. Chem. Soc., 1978, 26, 839.
6. A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern Plastic Int., Aug, 1991, 33.
7. M. C. Bernard, V. T. Bich, Synth. Met., 1999, 101, 811-812.
8. A. Kitani, M. Kaya, J. Yano, K. Yoshikawa, Synth. Met., 1987, 18, 341-346.
9. A. Malinauskas, R. Holze, Synth. Met., 1998, 97, 31-36.
10. J. C. Chang and A. G. MacDiarmid, Synth. Met., 1986, 13, 193.
11. W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc. Fararday Trans., 1986, 82, 2385.
12. A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans., 1910, 97, 2388.
13. S. S. Pandey, S. Annapoorni, and B. D. Malhocra, Macromolecules, 1993, 26, 3190.
14. J. C. Chiang and A. G. MacDiarmid, Synth. Met., 1986, 13, 193.
15. W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem., 1987, 91, 5813.
16. A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri and A. J. Epstein, “polyaniline: Synthesis and Characterization of the Emeraldine Oxidation State by Elemental Analysis” in L. Alca’cered.) “Conducting Polymer” D. Reidel Pub. Comp. Dordrecht, Holland, 1987, 105.
17. G. E. Asturias, A. G. MacDiarmid, R. P. Mccall and A. J. Epstein, Synth. Met., 1989, 29, E157.
18. M. Inoue, R. E. Navarro and M. B. Inoue, Synth. Met., 1989, 30, 199-207.
19. B. Wang, J. Tang, Synth. Met., 1986, 13, 329-334.
20. K. Koziel, M. Lapkowski and S. Lefrant, Synth. Met., 1995, 69, 217-218.
21. P. Rannou, M. Nechtschein, Synth. Met., 1997, 84, 755-756.
22. M. C. Bernard, V. T. Bich, Synth. Met., 1999, 101, 811-812.
23. (a) E. M. Genies, A. A. Syed and C. Jsintavis, Mol. Cryst. Liq. Cryst., 1985, 121, 181.
(b) E. M. Genies and C. Tsintavis, J. Electroanal. Chem., 1985, 195, 109.
24. Epstein, A. J.; Yue, J. US Patent no. 5137991, 1992.
25. Joo, J.; Epstein, A. J. Appl Phys Lett, 1994, 65, 2278.
26. Makela, T.; Pienimaa, S.; Taka, T.; Jussila, S.; Isotalo, H., Synth. Met. 1997, 85, 1335.
27. Racicot, R.; Brown, R.; Yang, S. C., Synth. Met. , 1997, 85, 1263.
28. Kin, P. J.; Silverman, D. C.; Jeffreys, C. R., Synth. Met. 1997, 85, 1327.
29. Bernard, M. C.; Goff, H. L.; Joiret, S.; Dinh, N. N.; Toan, N. N. Electrochem Soc, 1999, 146, 995.
30. Wessling, B.; Posdorfer, J. Electrochim Acta, 1999, 44, 2139.
31. Malik, M. A.; Galkowski, M. T.; Bala, H.; Grzybowska, B.; Kulesza, P. J. Electrochim Acta, 1999, 44, 2157.
32. Li, C.; Wang, Y.; Wan, M.; Li, S., Synth. Met. , 1991, 39, 90.
33. Ozaki, M.; Peebles, D. L.; Weinberger, B. R.; Hegger A. J.; MacDiarmid, A. G., J. Appl. Phys., 1980, 51, 4252.
34. Kuo, C. T.; Chiou, W. H., Synth. Met. , 1997, 88, 23.
35. Wang, H. L.; MacDiarmid, A. G.; Wang, Y. Z.; Gebler, D. D.; Epstein, A. J., Synth. Met. , 1996, 78, 33.
36. Wang, Y. Z.; Gebler, D. D.; Lin, L. B.; Blatchford, J. W.; Jessen, S. W.; Wang, H. L.; Epstein, A. J., Appl. Phys. Lett. , 1996, 68, 894.
37. Chen, S. A.; Chuang, K. R.; Chao, C. I.; Lee, H. T., Synth. Met. , 1996, 82, 207.
38. Gaponik, N. P.; Talapin, D. V.; Dmitri, V.; Rogach, A. L., Phys. Chem Chem. Phys., 1999, 1, 1787.
39. Kobayashi, N.; Yamada, K.; Hirohashi, R., Electrochim. Acta. , 1992, 37, 2101.
40. Morita, M.; J. Poly. Sci., Part B: Polymer Phys., 1994, 32, 231.
41. Bernard, M. C.; Goff, H. L.; Wen, Z., Synth. Met. , 1997, 85, 1347.
42. Bernard, M. C.; Goff, H. L.; Bich, V. T.; Wen, A. Z., Synth. Met. , 1996, 81, 215.
43. Barbero, C.; Miras, M. C.; Koetz, R.; Haas, O., Synth. Met. , 1993, 55, 1539.
44. Tsutsumi, H.; Yamashita, S.; Oishi, T., Synth. Met. , 1997, 85, 1361.
45. Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K. , Synth. Met. , 1996, 80, 279.
46. Cui, G.; Lee, J. S.; Kim, S. J.; Nam, H.; Cha, G. S.; Kim, H. D. Analyst, 1998, 123, 1855.
47. Takeda, S., Thin Solid Film, 1999, 343, 310.
48. X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao and Y. Q. Mao, J. Mater. Chem., 2001, 11, 1732.
49. X. Y. Yuan, G. S. Wu, T. Xie, B. Y. Geng, Y. Lin, G. W. Meng, L. D. Zhang, Solid State Sciences, 2004, 6, 735.
50. Wen-Bo Zhao, Jun-Jie Zhu, Hong-Yuan Chen, Journal of Crystal Growth, 2003, 258, 176.
51. Younan Xia, Naomi J. Halas, Guest Editors, MRS BULLETIN, 2005, 30, 338.
52. Chia-min Yang, Hwo-shuenn Sheu and Kuei-jung Chao, Adv. Funct. Mater., 2002, 2, 143.
53. Catherine J. Murphy, Tapan K. Sau, Anand Gole and Christopher J. Orendorff, MRS BULLETIN, 2005, 30, 349.
54. Benjamin Wiley, Yugang Sun, Jingyi Chen, Hu Cang, Zhi-Yuan Li, Xingde Li and Younan Xia, MRS BULLETIN, 2005, 30, 356.
55. T. Y. Tseng and J. C. Lin, IEEE Trans. on Magnetics,1989, 25, 4405.
56. T. Y. Tseng and J. J. Yu, J. Mater. Sci., 1986, 21, 3615.
57. K. P. Jayadeven and T. Y. Tseng, Encyclopedia of nanoscience & nanotechnology, edited by H. S. Nalwa, Am. Sci. Publisher, 2004, 8, 333.
58. 李斯毅、李佳穎、曾俊元,奈米材料的製程及潛在的應用,物理雙月刊,2004
59. T. Y. Tseng, Ferroelectrics, 1999, 232, 881.
60. C. Y. Liu, H. T. Lue, and T. Y. Tseng, Appl. Phys. Lett., 2002, 81, 4416.
61. M. Nayak, S. Ezhilvalavan and T. Y. Tseng, Thin Film Materials, 2002, 3, 99.
62. Benjamin Wiley, Yugang Sun, Jingyi Chen, Hu Cang, Zhi-Yuan Li, Xingde Li and Younan Xia, MRS BULLETIN, 2005, 30, 356.
63. Naomi Halas, MRS BULLETIN, 2005, 30, 362.
64. Cao, H. Q.; Tie, C. Y.; Xu, Z.; Hong, J. M.; Sang, H., Appl. Phys. Lett. , 2001, 78, 1592.
65. Yonghong He, Jinying Yuan, Gaoquan Shi, J. Mater. Chem., 2005, 15, 859.
66. Sophie Demoustier-Champagne and Pierre-Yves Stavaux, Chem. Mater. 1999, 11, 829.