跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐瑞宏
Ruei-hung Shiu
論文名稱: 道路管線埋設對鋪面強度衰減之影響研究
The Effect of Pavement Strength Decay on Buried Pipeline
指導教授: 林志棟
Jyh-Dong Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 186
中文關鍵詞: 振態振動頻率沉陷量彈性模數單位重集中質量
外文關鍵詞: frequency, trench, settlement, lumped mass, vibration
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究經由集中質量系統之動力反應方程式推導,建立一種以現有道路結構之動力特性為基準的管線及回填材料設計方法。該理論方法以既有道路結構之動力特性為標準,必需根據現有之道路結構才能進行管線及回填材料之設計。設計參數為材料彈性模數及單位重。設計條件為維持原有道路系統之基本振動頻率與振動形態。可根據不同的設計需求,如埋管深度、管徑、鋪面沉陷量、回填材料種類或施工成本等進行評估,以達到需求目標。本研究透過該理論方法,建立一種簡化評估分析程序,應用於分析管線設計施工對鋪面沉陷量造成之影響,並由材料應力-應變關係估算鋪面強度之衰減程度。經由有限元素法分析結果之比對,評估該理論方法具有足夠之計算精度,可以提供工程界快速設計及分析使用。


    A novel lumped mass system of dynamic analysis procedure is presented to evaluate the pavement strength decay on buried pipeline. According to the vibration frequency of original road structure, we can design the pipeline and backfill materials in trench by choosing specific gravity and modulus of elasticity. Based on the natural frequency and mode shape of the buried pipeline system, we could calculate the accumulative settlement to evaluate the strength decay of pavement by checking stress-strain relationship. With increasing the accumulative settlement, the worser the pavement strength decays. It would be shown that the precision of lumped mass system operation is as well as to the finite element analysis results. The design procedure of lumped mass system can be satisfied with the requirement of designing for burial depth, radius of pipe, settlement, backfills and the cost evaluation of construction. It would be provided the advantage of design procedure to the road-engineering and pipeline burial construction projects in this research.

    摘 要 I ABSTRACT II 誌 謝 III 符號說明 IV 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 研究範圍 3 1-4 研究方法 3 1-5 研究架構及流程 4 第二章 文獻回顧 7 2-1 管線設計 7 2-1-1 耐震設計規範與一般規範之差異 7 2-2 一般管線設計之影響因素 8 2-2-1 管線材質 8 2-2-2 垂直荷重 12 2-2-3 回填材料規格 21 2-2-4 其它影響因素 22 2-3 管線埋設對道路結構造成之影響 23 2-3-1 車轍破壞 23 2-3-2 疲勞破壞(鱷魚狀裂縫) 23 2-3-3 管溝回填土壓實度不足之影響 24 2-3-4 負拱效應(Negative Arching effect) 25 2-4 土壤壓實度與單位重之關係 25 2-5 彙整說明 27 第三章 研究方法 29 3-1 研究目的 29 3-2 研究方法 29 3-3 研究步驟 30 3-4 研究工具及設備 36 3-5 研究結果分析比較 36 第四章 理論分析 37 4-1 道路材料結構系統之靜力學分析 37 4-1-1 道路鋪面結構之力學特性 37 4-1-2 道路鋪面多層結構力學分析 38 4-2集中質量系統分析理論 39 4-2-1 基本理論說明 39 4-2-2 執行程序概述 40 4-2-3 道路結構分析模型之推導 40 4-2-4 道路結構基本振態分析 44 4-2-5 道路挖掘回填材料對道路結構系統之影響 45 4-2-6 管線構造對道路結構系統之影響 50 4-2-7 人手孔等地下構造物對道路結構系統之影響 63 4-2-8 有限元素數值模擬動力反應分析 66 4-3 道路鋪面結構之有限元素分析 68 4-3-1 有限元素分析過程說明 68 4-3-2 道路鋪面結構系統之有限元素分析模型建置 69 4-3-3 管線埋設模型 74 4-4 車輛動態荷重分析 75 4-4-1 車輛輪跡接觸壓力 75 4-4-2 載重作用位置 78 4-4-3 額外作用於人孔週邊裁切區域水平力及垂直力之評估 80 4-4-4 動態荷重函數 88 4-4-5 動態歷時分析 89 第五章 SOLIDWORKS軟體分析結果及討論 93 5-1 道路結構與人手孔構造所產生之互制影響 93 5-2 回填材料及臨近區域之鋪面受力行為 97 5-3 彙整說明與討論 100 第六章 SAP2000有限元素分析結果及討論 102 6-1 道路面層輪跡作用點之應力分佈情形 102 6-2 人孔週邊材料之應力與變形之分析結果 109 6-3 由SAP2000軟體分析所得之輪跡載重臨界作用位置 110 6-4 重車輪胎尺寸影響 111 6-5 車速之影響 112 6-6 人手孔構造及鄰近材料之彙整說明 112 6-7 管線構造及道路系統之有限元素模型建置 114 6-8 管線構造各區域承受車輛載重之有限元素分析結果 115 6-9 分析層厚度設定之敏感度分析說明 123 第七章 簡化力學評估分析程序之建立 125 7-1 設計及分析程序 125 7-1-1 建立集中質量系統在自由振動情況下各構造 125 7-1-2 計算集中質量系統材料自重所造成之累積變形量曲線 125 7-1-3 計算集中質量系統承受車輛輪重(活載重)所造成之累積變形量曲線 126 7-1-4 檢核鋪面層累積變形量 127 7-2 案例說明 128 7-3 工程應用 130 7-4 集中質量簡化評估分析程序與有限元素法之分析精度說明 131 第八章 結論與建議 136 8-1 採用集中質量系統理論及設計方法之特性 136 8-2 管溝埋設物及回填材料設計 139 8-3 鋪面變形量及耐久性評估 141 8-4 基底層土壤或岩層的剛性變化 142 8-5 結 論 143 8-6 建議 143 參考文獻 146 附錄A 151 附錄B 152 附錄C 158

    【1】American Lifelines Alliance, ”Seismic Guideline for Water Pipelines”, 2005
    【2】Peixth Shi and Thomas D. O’rourke, ”Seismic Response Modeling of Water Supply Systems”, Technical Report MCEER-08-0016,Cornell University,2008
    【3】日本下水道協會,「下水道設施的耐震對策指針與解說」,1997
    【4】中华人民共和国建设部,「室外给水排水和燃气热力工程抗震设计规范」,中国建筑工业出版社,2003
    【5】中華民國自來水協會,「自來水設備工程設施標準解說」, 1995
    【6】張吉佐、黃崇仁、陳思宏,「水平導向鑽掘工法之探討」,HDD 工法之設計問題探討,中興工程顧問股份有限公司,2000。
    【7】ADS, ”Drainage Handbook”, Advanced Drainage System Inc.,2010
    【8】環境工程委員會,「下水道管渠工程設計指南」,中國土木水利工程學會,1984。
    【9】Homer W. Parker, ”Waster Systems Engineering”,1978
    【10】ASCE,” Design and Construction of Sanitary and Storm Sewers: WPCF Manual of Practice No. 9/ASCE Manual on Engineering Practice No. 37”,1991
    【11】鄒平華等人,「直埋敷設供熱管道垂直荷載計算方法的研究」,暖通空調HV&AC,第35卷第11期,2005
    【12】Teruhisa Masada, ”Modified IOWA Formula for Vertical Deflection of Buried Flexible Pipe”,pp.440~446,Journal of Transportation Engineering ,2000
    【13】J. D. Hartley, and J. M. Duncan, “E’ and Its Variation with Depth.” J. Transp. Engrg., ASCE, 113(5), 538–553, 1987
    【14】D. N. Adams, T. Muindi, and E. T. Selig, ”Polyethylene Pipe under High Fill.”, Transp. Res. Rec. 1231, Transportation Research Board, Washington, D.C., 88–95, 1989
    【15】A. P. Moser, ‘‘Structural Performance of Buried 48-inch Diameter N-12 HC Polyethylene Pipes.’’ Rep. to Advanced Drainage Systems (ADS), Inc., Buried Struct. Lab., Utah State University, Logan, Utah, 1994
    【16】T. Masada, ‘‘Structural Performance of Profile-wall Plastic Pipes under Relatively Shallow Soil Cover and Large Surface Loading.’’ PhD dissertation, Coll. of Engrg. and Technol., Ohio University, Athens, Ohio, 1996
    【17】S. Singh; N. Sivakugan, and S. K. Shukla, “Can Soil Arching Be Insensitive to ?”, International Journal of Geomechanics © ASCE, Vol. 10, No. 3, pp.124-128, 2010
    【18】K. Pirapakaran, and N. Sivakugan, “A Laboratory Model to Study Arching Within a Hydraulic Fill Stope”, Geotech. Test. J., 30(6), pp.496–503, 2007
    【19】R. L. Handy, “The Arch in Soil Arching”, J. Geotech. Engrg., 111(3), pp.302–318, 1985
    【20】R. L. Handy, and M. G. Spangler, “Geotechnical Engineering- Soil and Foundation Principles and Practice”, 5th Edition, McGraw-Hill, New York, 2007.
    【21】AASHTO, “HB-17 Standard Specifications for Highway Bridges”, 17th Edition, American Association of State and Highway Transportation Officials, 2002
    【22】ASTM International, “ASTM D2487 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)“, 2010
    【23】ASTM International, “ASTM D2321 Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications”, 2009
    【24】AASHTO, “AASHTO M 145 Standard Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes”, American Association of State Highway and Transportation Officials, 1991
    【25】AASHTO, “AASHTO M 43 Standard Specification for Sizes of Aggregate for Road and Bridge Construction”, American Association of State Highway and Transportation Officials, 2005
    【26】AASHTO, “AASHTO LRFD Bridge Design Specifications, Section 12. Buried Structures and Tunnel Liners”, American Association of State Highway and Transportation Officials, 2007
    【27】M. Ameri-Gaznon, “Permanent Deformation Potential in Sphalt Concrete Overlays over Portland Cement Concrete Pavements”, PhD thesis, Texas A&M University, College Station, Tex. 1989
    【28】T. F. Fwa, S. A. Tan, and L. Y. Zhu, “Rutting Prediction of Asphalt Pavement Layer Using C –φ Model”, Journal of Transportation Engineering, Vol.130, No. 5, September 1, 2004
    【29】N. Gurung, “A Laboratory Study on The Tensile Response of Unbound Ranular Base Road Pavement Model Using Geosynthetics, Geotextiles and Geomembranes, 21 ,pp.59–68, 2003
    【30】G. D. Airey, A. C. Collop, N. H. Thom, “Mechanical Performance of Asphalt Mixtures Incorporating Slag and Glass Secondary Aggregates”, In Proceedings of the Eighth Conference on Asphalt Pavements for outhern Africa, South Africa, Sun City, 2004.
    【31】Zhongjie Zhang, Murad Y. Abu-Farsakh, And Mingjiang Tao, “Evaluation of Trench Backfills at Highway Cross-Drains”, The International Journal of Pavement Engineering, Vol. 6, No. 2, pp. 77–87, 2005
    【32】R.W.I. Brachman and R.P. Krushelnitzky, “Response of A Landfill Drainage Pipe Buried in A Trench”, Canadian Geotechnical Journal, 42, pp.752-762, 2005
    【33】N.M. Newmark, “Problems in Wave Propagation in Soil and Rocks”, Proceedings of Materials, University of New Mexco Press, Albuquerque, NM. 1967
    【34】N.M. Newmark, “Torsion in Symmetrical Buildings”, Proceedings of The Fourth World Conference on Earthquake Engineering, Santiago,Chile,1969
    【35】N. S. Muhammad, B. C. Bodhinayake, “Non-Linear Finite Element Analysis of Flexible Pavements”, Advances in Engineering Software 34, pp.657–662, 2003
    【36】J.G.S. da Silva, “Dynamical Performance of Highway Bridge Decks with Irregular Pavement Surface, Computers and Structures 82, pp.871–881, 2004
    【37】AASHTO, “AASHTO Guide to Design of Pavement Structures”, Washington DC, American Association of State Highway and Transportation Officials, 1993
    【38】M. G. Symons, and D. C. Poli, “Stabilisation of Pavement Soils from South Australia”, A research report, Structural Materials and Assemblies Group, University of South Australia; 1996.
    【39】H. Akbulut, K. Aslantas, “Finite Element Analysis of Stress Distribution on Bituminous Pavement and Failure Mechanism”, Materials and Design 26, pp.383–387, 2005
    【40】Thomas Kasper, Gu¨nther Meschke, “A Numerical Study of The Effect of Soil and Grout Material Properties and Cover Depth in Shield Tunnelling”, Computers and Geotechnics 33, pp. 234–247, 2006
    【41】J.G.S. da Silva, “Dynamical Performance of Highway Bridge Decks with Irregular Pavement Surface”, Computers and Structures 82, pp.871–881, 2004
    【42】William T. Thomson, “Theory of Vibration with Applications”, pp.302, Second Edition, 1981
    【43】Braja M. Das, “Fundamentals of Soil Dynamics”, pp.44, 1983
    【44】內政部營建署,「寬頻管道工程設計及施工規範」,pp.16,2008
    【45】The Engineering ToolBox, “Polymers - Physical Properties”,
    http://www.engineeringtoolbox.com/material-properties-t_24.html
    【46】南亞塑膠工業(廈門)有限公司,「南亞PVC管規格」, http://www.nypc.com.cn/
    【47】ACI Committee 318, “ACI 318-08 Building Code Requirements for Structural Concrete and Commentary”, 2008
    【48】營建署,「寬頻管道工程設計及施工規範-施工篇」,2008
    【49】柴希文、謝佩昌,「礦物摻料在高流動低強度回填料的應用」,應用礦物摻料提昇混凝土品質研討會論文集,台灣營建研究院,1999 年8 月
    【50】Thomas Kasper, Gu¨nther Meschke, “A Numerical Study of the Effect of Soil and Grout Material Properties and Cover Depth in Shield Tunnelling”, Journal of Computers and Geotechnics, vol.33, pp.234–247, 2006
    【51】Assaf Klar, y, z, Ashraf, S. Osman, and Malcolm Bolton,”2D and 3D Upper Bound Solutions for Tunnel Excavation Using ‘Elastic’ Flow Fields”, International Journal for Numerical and Analytical Methods in Geomechanics, 2007
    【52】張大猷,「熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析」,碩士論文,國立中央大學土木系,2004
    【53】莊貿欽,「營建剩餘土石方再利用於路基之研究」,國立台灣科技大學,營建工程系,2008

    QR CODE
    :::