跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊攸祁
Yu-Chi Yang
論文名稱: Optimal Use of Satellite Sounding Products for Numerical Weather Prediction
指導教授: 劉千義
Chian-Yi Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 92
中文關鍵詞: 資料同化衛星反演產品
外文關鍵詞: sounding product
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   區域數值天氣預報模式能進行高解析度之預報及模擬,而預報結果與初始條件和邊界條件有著直接關係。初始場能藉由資料同化方法加入觀測資料而獲得改善。衛星觀測能提供空間上廣大的覆蓋率,且能彌補傳統觀測較稀少的海洋區域。NASA/EOS/Aqua衛星上搭載著MODIS、AMSU與AIRS等儀器,結合AMSU/AIRS的反演產品能提供高品質的三維大氣溫溼度資訊,此產品之水平空間解析度可達45公里。另一方面,藉由物理反演法所反演出的AIRS 單一視場(single field-of-view; SFOV)反演產品,有著比AMSU/AIRS更佳的15公里空間解析度。不同空間解析度與反演產品準確度的二種衛星資料,對數值天氣預報的貢獻亦不相同,因此我們提出是否有最佳化的使用方法及時機,期能探討對於數種預報參數的改善能力。
      本研究藉由資料同化系統分析AMSU/AIRS與AIRS SFOV兩種反演產品對於區域數值天氣預報模式的影響,將使用WRF與其3D-Var資料同化系統,針對2012年6月於臺灣所發生之梅雨期豪大雨事件進行模擬預報實驗。主要結果顯示由於微波與紅外線觀測上的特性,AMSU/AIRS的反演產品具有能提供雲區反演且空間涵蓋較廣的優勢,對於預報的影響較AIRS SFOV產品為大。但另一方面,若AMSU/AIRS與AIRS SFOV的反演資料空間涵蓋範圍一致,則因AIRS SFOV反演產品能提供較佳的空間解析度資訊,因而於溫溼度的預報改善較AMSU/AIRS明顯。因此,高光譜紅外線與微波若能適當的搭配使用,將能進一步提升預報能力。研究中亦發現, AMSU/AIRS反演產品有相對較小的溫度偏差及較高的空間覆蓋率,同化AMSU/AIRS的實驗組對於高度場與鋒面位置的掌握,均較使用AIRS SFOV之預報能力為佳。


      The numerical weather prediction (NWP) and simulation model has been developed for decades. It has received substantial improvement in term of predictability. On the other hand, satellite observations and retrieved products may provide critical assistant over ocean than conventional observation. In particular, the combined sounding retrievals from Advanced Microwave Sounding Unit and Atmospheric Infrared Sounder (AMSU/AIRS) suggest a high quality estimation of atmospheric temperature and moisture profiles. Meanwhile, a higher spatial resolution from single field-of-view (SFOV) of AIRS sounding was developed followed by the previous combined AMSU/AIRS product. It is believe that finer spatial resolution retrievals could retain a better gradient structure in a weather system.
      In this study, we propose to use combined AMSU/AIRS and AIRS SFOV soundings to evaluate the performance for introducing these two different data sets. A heavy precipitation MCS case associated with a Mei-Yu frontal system during early June 2012 in the vicinity area of Taiwan is selected to demonstrate this concept. Weather Research Forecasting (WRF) and its three-dimensional variational module (3D-Var) is used to evaluate the forecast performance due to assimilating of NASA EOS AMSU and AIRS products. The preliminary result suggests that AIRS SFOV data set have better performance over combined AIRS/AMSU in temperature and mixing ratio forecast when both data are selected in the same spatial coverage. However, assimilating AMSU/AIRS data can improve the front location. Therefore, combine AMSU/AIRS and AIRS SFOV these two products may enhance the forecast capability.

    摘要 I ABSTRACT II 致謝 III Table of Contents IV List of Figures VI List of Tables XI CHAPTER 1 Introduction 1 1.1 Overview 1 1.2 Research Purpose and Scope 5 CHAPTER 2 Data 8 2.1 Initial and Boundary of NWP Model 8 2.2 Convectional Observation Data 9 2.3 Satellite Data 10 2.3.1 AMSU Measurements 10 2.3.2 Full Spatial Resolution AIRS Measurements 11 2.3.3 AMSU and AIRS Data Quality Control 12 2.3.4 AMSU and AIRS Data and Retrieved Product Quality 13 2.4 Re-analysis Data Set 14 CHAPTER 3 Model and Experiment Design 16 3.1 Numerical Weather Prediction (NWP) Model and Data Assimilation System 16 3.2 Experiment Design 18 3.3 Verification of Model Forecast 20 3.3.1 Statistical Metrics 21 CHAPTER 4 Result 24 4.1 Temperature Verification 25 4.2 Mixing Ratio Verification 26 4.3 Height Verification 29 CHAPTER 5 Comparisons between AMSU and AIRS data impacts in NWP using collocation method 30 5.1 Collocation Method 30 5.2 Temperature Verification 32 5.3 Mixing Ratio Verification 33 5.4 Non-collocated AIRS/AMSU Data Impact 34 5.5 Height and Front Location Verification 36 CHAPTER 6 Conclusions 38 References 42 Appendices 46

    Ackerman, S.A., K. I. Strabala, P. W.P. Menzel, R.A. Frey, C.C. Moeller and L.E. Gumley (1998): Discriminating clear sky from clouds with MODIS, Journal of Geophysical Research,103(D24):32,141-32,157.
    Andersson, E., A. Hollingsworth, G. Kelly, P. Lonnberg, J. Pailleux, and Z. Zhang (1991): Global observing system experiments on operational statistical retrievals of satellite sounding data, Mon. Wea. Rev., 119, 1851–1865, doi:10.1175/1520-0493(1991)119<1851:GOSEOO>2.0.CO;2.
    Bouttier, F., and G. Kelly (2001): Observing-system experiments in the ECMWF 4D-Var data assimilationsystem, Quart. J. Roy. Meteor. Soc., 127, 1469–1488, doi:10.1002/qj.49712757419.
    Chen, S.-H., Z. Zhao, J. S. Haase, A. Chen, F. Vandenberghe (2008): A study of the characteristics and assimilation of retrieved MODIS total precipitable water data in severe weather simulations, Mon. Wea. Rev., 136, 3608-3628.
    Chien, F.-C., and Y.-H. Kuo (2010): Impact of FORMOSAT-3/COSMIC GPS radio occultation and dropwindsonde data on regional model predictions during the 2007 Mei-yu season. GPS Solutions, 14, 51-63. DOI: 10.1007/s10291-009-0143-2. (SCI)
    Chou, C.-B., and H.-P. Huang (2011): The Impact of Assimilating Atmospheric Infrared Sounder Observation on the Forecast of Typhoon Tracks. Adv. Meteorol., 2011, doi:10.1155/2011/803593.
    Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf , L. Zhou and X. Liu (2006): Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts; J. Geophys. Res., 111, D09S15, doi:10.1029/2005JD006116.
    Gandin, L. S. (1963): Objective Analysis of Meteorological Fields. Leningrad, Gidrometeoizdat, in Russian. (English Translation: Israel Program for Scientific Translations, Jerusalem, 1965, 242 pp.)
    J. Xu, S. Rugg, L. Byerle, and Z. Liu (2009): Weather Forecasts by the WRF-ARW Model with the GSI Data Assimilation System in the Complex Terrain Areas of Southwest Asia. Wea. Forecasting, 24, 987–1008.
    Kwon, E.-H., J. Li,,B. J. Sohn, and E. Weisz (2012):Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval. Advances in Atmospheric Sciences, 29(2):263-273.
    Li J., and H.L. Huang (1999): Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle. Appl Opt. 38(6):916-23.
    Li, J., W. Wolf, W. P. Menzel, W. Zhang, H.-L. Huang, and T. H. Achtor (2000): Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation, J. Appl. Meteorol., 39: 1248 - 1268.
    Li, J., C. Y. Liu, H.-L. Huang, T. J. Schmit, W. P. Menzel, and J. Gurka (2005a): Optimal cloud-clearing for AIRS radiances using MODIS. IEEE Trans. On Geoscience and Remote Sensing., 43, 1266 - 1278.
    Li, J., H.-L. Huang, C.-Y. Liu, P. Yang, T. J. Schmit et al. (2005b): Retrieval of cloud microphyiscal properties from MODIS and AIRS. J. Appl. Meteorol., 44, 1526 - 1543.
    Liu, C.-Y., J. Li, E. Weisz, T. J. Schmit, H.-L. Huang (2008): Synergistic use of AIRS and MODIS radiance measurements for atmospheric profiling. Geophysical Research Letters, 35, L21802, doi:10.1029/2008GL035859
    Liu, C.-Y, G.-R Liu, T.-H Liu, C.-C Liu; H. Ren, and C.-C. Young (2014): Using Surface Stations to Improve Sounding Retrievals from Hyperspectral Infrared Instruments. IEEE T. Geosci. Remote, 52(11), 6957-6963.
    Liu, Y.-C., S.-H Chen, F.-C Chien (2011): Impact of MODIS and AIRS total precipitable water on modifying the vertical shear and Hurricane Emily simulations. Journal of Geophysical Research-Atmosphere, 116, D02126.
    Migliorini, S. (2012): On the equivalence between radiance and retrieval assimilation. Mon. Wea. Rev., 140(1). pp. 258-265. ISSN 0027-0644
    Raju, A., A. Parekh, J. S. Chowdary, and C. Gnanseelan (2014): Impact of satellite-retrieved atmospheric temperature profiles assimilation on Asian summer monsoon 2010 simulation. Theoretical and Applied Climatology, 116:1-2, 317-326.
    Singh, R., C. M. Kishtawal, S. P. Ojha, and P. K. Pal (2012): Impact of assimilation of Atmospheric InfraRed Sounder (AIRS) radiances and retrievals in the WRF 3D-Var assimilation system, J. Geophys. Res., 117, D11107, doi:10.1029/2011JD017367.
    Susskind, J., C. D. Barnet, and J. M. Blaisdell (2003): Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds, IEEE T. Geosci. Remote, 41, 390–409, doi:10.1109/Tgrs.2002.808236.
    Xu, J., S. Rugg, L. Byerle, and Z. Li. (2009): Weather Forecasts by the WRF-ARW Model with the GSI Data Assimilation System in the Complex Terrain Areas of Southwest Asia. Wea. Forecasting, 24, 987–1008.

    QR CODE
    :::