跳到主要內容

簡易檢索 / 詳目顯示

研究生: 溫國瑋
Kuo-Wei Wen
論文名稱: 區塊重排於小波封包之階層式集合分割影像壓縮技術
Block Reordering Wavelet Packet SPIHT Image Coding
指導教授: 張寶基
Pao-Chi Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 78
中文關鍵詞: 小波轉換階層式集合分割影像壓縮技術小波封包區塊重排
外文關鍵詞: wavelwe transform, SPIHT, wavelet packet, block reordering
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


  • The set partitioning in hierarchical trees (SPIHT) coding algorithm, proposed by Said and Pearlman, provides effective progressive and embedding property. However, for images with high energy that is randomly dispersed throughout high frequency subbands in the wavelet domain, the SPIHT does not fully exploit energy compaction of the wavelet transform and thus becomes less efficient to represent these images. This paper presents an energy compaction method, block reordering wavelet packet SPIHT (BRWP-SPIHT) coding, to enhance the image visual quality. The block reordering technique divides the wavelet coefficients into blocks and reorders these blocks based on the significance of each block. The simulation results show that BRWP-SPIHT is superior, on average, to SPIHT by 0.6 dB for texture rich images. Subjectively, it also shows significant enhancement to the quality of the reconstructed image, particularly for images with fractal and oscillatory patterns.

    第一章 緒論 1 1.1前言 1 1.2研究動機 1 1.3論文架構 3 第二章 靜態影像壓縮編碼技術 4 2.1小波轉換 4 2.1.1小波轉換簡介 4 2.1.2小波轉換係數之對應關係 6 2.2 SPIHT之編碼壓縮系統 7 2.2.1 SPIHT簡介 7 2.2.2 SPIHT的系統架構 8 2.2.3 SPIHT編碼之範例解說 17 2.3算數編碼 25 2.3.1在SPIHT上算術編碼的運用 27 2.4實驗結果 27 第三章 SPIHT靜態影像壓縮編碼技術之改良 33 3.1 SPIHT存在的問題 33 3.2 Sorting Pass部分的改良 34 3.3高頻部分的能量集中與處理 37 3.3.1小波封包的應用 38 3.3.2區塊重排的改良方法 40 3.3.3可變動區塊重排的改良方法 45 3.3.4各頻帶的位元配置 48 第四章 實驗結果與討論 52 4.1 Sorting Pass改良之成果數據 52 4.2使用小波封包之各項成果數據 55 4.3區塊重排之各項成果數據 57 4.4可變動區塊重排之各項成果數據 66 第五章 結論與未來展望 76

    [1]A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning into hierarchical trees,” IEEE Trans. on Circuits and Systems for Video Technology, vol.6 pp.243-250, June 1996.
    [2]J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Processing, Spec. Issue Wavelets Signal Processing, vol. 41, pp. 3445-3462, Dec. 1993.
    [3]S. A. Martucci, I. Sodagar, T. Chiang, and Y. Q. Zhang, "A Zerotree Wavelet Video Coder," IEEE Trans. on Circuits and System for Video Technology, vol. 7, no. 1, pp.109-118, Feb 1997.
    [4]S. D. Servetto, K. Ramchandran and M. T. Orchard, “Wavelet based image coding via morphological prediction of significance,” in Proc. IEEE Int. Conf. Image Processing, pp. 530-533, Oct. 1995.
    [5]S. D. Servetto, K. Ramchandran and M. T. Orchard, “Image coding based on a morphological representation of wavelet data,” IEEE Transactions on Image Processing, Vol. 8, pp. 1161-1174, Sept. 1999.
    [6]B. B. Chai, J. Vass and X. Zhuang, “Significance-linked connected component analysis for wavelet image coding,” IEEE Transactions on Image Processing, Vol. 8, pp. 774-784, June 1999.
    [7]R. M. Rao and A. S. Bopardikar, “Wavelet Transform,” 1998.
    [8]A. Gersho and R. M. Gray, “Vector quantizatioin and signal compression,” Kluwer Academic Publishers. Feb. 1992.
    [9]I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Communications of the ACM, Vol. 30, No. 6, Jun. 1987.
    [10]D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proc. Inst. Electr. Radio Eng. 40, pp. 1098-1101, Sep. 1952.
    [11]M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Processing, vol. 1, pp. 205-220, Apr. 1992.
    [12]http://www.ipl.rpi.edu/research/SPIHT/
    [13]S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern. Analysis and Machine Intell., vol. 11, pp. 674-693, July 1989.
    [14]R. R. Coifman and M. V. Wickerhauser, "Entropy-based algorithms for best basis selection," IEEE Trans. Information Theory, vol. 38, pp. 713-718, March, 1992.
    [15]D. Taubman, “High performance scalable image compression with EBCOT, ” Proce. IEEE Int. Conference on Image Processing(ICIP), pp. 24-28, October 1999, Kobe, Japan.
    [16]D. Taubman, “High performance scalable image compression with EBCOT, ” IEEE Transactions on Image Processing, Vol. 9, pp. 1158-1170, July. 2000.
    [17]F. G. Meyer, A. Z. Averbuch, “Fast adaptive wavelet packet image compression,” IEEE Transactions on Image Processing, Vol. 9, pp. 792-800, May 2000.
    [18]N. M. Rajpoot, F. G. Meyer, R. G. Wilson and R. R. Coifman, “On zerotree quantization for embedded wavelet packet image coding,” in Proc. Int. Conf. Image Processing, 1999.

    QR CODE
    :::