跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林世坤
Shih-kun Lin
論文名稱: 可配置2×2,4×4,與8×8資料串流之K最佳多輸入輸出解碼器
Design of Configurable K-Best MIMO Detector for 2×2, 4×4, and 8×8 Data Streams
指導教授: 薛木添
Muh-tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 多輸入輸出解碼可配置離散K最佳演算法連續干擾消除
外文關鍵詞: MIMO detection, configurable, distributed K-best algorithm (DKB), successive interference canstellation (SIC)
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文裡,我們提出了可適用於8×8、4×4 和 2×2不同的天線組態,以及可支援64-QAM、16-QAM和QPSK不同的調變方法且K值可支援10和5的K最佳多輸入輸出解碼器。我們的設計運用了離散K最佳演算法(Distributed K-best, DKB)來減少傳統K最佳演算法每層的拜訪點從K√M到2K-1點,為了進一步減少拜訪的點數,又使用了連續干擾消除(Successive Inference Constellation, SIC)取代某些特定層數的DKB。在硬體的實現上,我們利用DKB與SIC的組合方塊來達到管線式架構可配置的需求。為了減少乘法器的複雜度,我們使用移位乘法器(Shift Multiplier, SM)來取代傳統的乘法器。本論文使用SMIMS VeriEnterprise Xilinx FPGA驗證電路功能,最後利用90-nm CMOS製程來實現所提出的可配置的多輸入輸出解碼器。該晶片核心面積為0.877×0.877mm2,當晶片操作在78.12 MHz以及1V的供應電壓和8×8 64QAM K=10的模式時其功率消耗僅16.5mW。


    In this thesis, we proposed a MIMO detector which can support multiple antenna types (8×8, 4×4, and 2×2), various modulation schemes (64-QAM, 16-QAM, and QPSK) and two K-values (K=10 or K=5) for IEEE 802.16m standard. From the algorithm aspects, the adopted distributed K-best (DKB) algorithm can reduce the number of visited nodes at each layer from K√M to 2K-1, compared with the conventional K-best algorithm. To further reduce number of visited nodes, our design employs successive inference cancellation (SIC) in some specific layers to replace the DKB layer. In terms of hardware implementation, the DKB and SIC are designed as elementary building blocks. With these building blocks, the proposed MIMO detector can flexibly achieve the configurable architecture. In order to simplify the multiplier complexity, we propose a novel shift-multiplier (SM) to replace the conventional multiplier. The proposed configurable MIMO detector is verified by the SIMIS VeriEnterprise Xilinx FPGA development board. Finally, this design is fabricated in a 90-nm CMOS technology. The core area is 0.877 0.877 mm2. With the 1V supply voltage, the chip power is 16.5 mW in 8×8 64-QAM mode and its clock rate is 78.12 MHz.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 背景 1 1.2 研究動機 2 1.3 論文架構 3 第二章 多輸入輸出系統 4 2.1 系統架構 4 2.2 多輸入輸出技術 6 2.2.1 發射分集 6 2.2.2 接收分集 8 2.2.3 波束成型 9 2.2.4 空間多工 10 2.3 空間多工解碼 11 2.3.1 線性解碼 11 2.3.2 非線性解碼 12 2.4 IEEE 802.16m規格簡介 15 第三章 K-最佳演算法 17 3.1 實數訊號模型 17 3.2 傳統K-最佳演算法 19 3.3 離散K-最佳演算法 20 3.3.1 演算法說明 20 3.3.2 星座點列舉法 22 3.3.3 天線組態可配置之系統架構 26 3.4 複雜度與效能比較分析 29 第四章 K-最佳演算法解碼器硬體電路設計 33 4.1 DKB硬體架構 33 4.2 FCU電路設計 35 4.2.1 移位乘法器 36 4.3 NCU電路設計 38 4.3.1 次子點列舉電路設計 39 4.4 連續干擾消除電路設計 41 4.5 天線可配置電路設計 41 第五章 晶片實現 43 5.1 設計流程 43 5.2 定點數分析 44 5.3 FPGA驗證 51 5.4 晶片設計結果 53 5.4.1 模擬結果驗證 53 5.4.2 晶片結論 55 5.5 硬體比較 58 第六章 結論 60 參考文獻 61

    [1] 3G LTE & IMT-Advanced Service, HSN 2006, February 22-24, 2006, Dr. Hyeon Woo Lee, Global Standards & Research, SAMSUNG ELECTRONICS
    [2] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closet point search in lattices,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201-2214, Aug. 2002.
    [3] K.-W. Wong, C.-Y. Tsui, R. S.-K Cheng and W.-H. Mow, “A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels,” in Proc. ISCAS, May 2002, pp. 273-276.
    [4] M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner, “K-Best MIMO detection VLSI architectures achieving up to 424 Mbps,” in proc ISCAS 2006, pp. 1151-1154.
    [5] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 491-503., 2006.
    [6] M. Shabany and P. G. Gulak, “Scalable VLSI architecture for K-best lattice decoders,”in proc. ISCAS, 2008, pp. 940-943.
    [7] 李蔚澤、許家華 ”WiMax技術原理與應用:瞭解寬頻無線網路”,2007年
    [8] E. Perahia, R. Stacey, “Next Generation Wireless LANs:Throughtput, Robustness, and Reliability in 802.11n” Cambridge University Press, Sep. 2008.
    [9] S. M. Alamouti, “A Simple transmit diversity technique for wireless communication,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458., Oct. 1998.
    [10] E. Teletar. “Capacity of multi-antenna Gaussian channels,” European Transactions Telecommunications, pp. 585-595., Nov.-Dec. 1999.
    [11] G. Golden, C. Foschini, R. Valenzuela, and P. Wolniansky, “Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,” IEE Electron. Lett., vol. 35, no. 1, pp. 14-16., Jan. 1999.
    [12] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J. Solid-State Circuit, vol. 40, pp. 1566-1577., 2005.
    [13] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding:Algorithm and VLSI implementation,” IEEE J. Sel. Areas Commun., vol. 26, no. 2, pp. 290-300., 2008.
    [14] IEEE (2010). IEEE 802.16m System Description Document (SDD) Draft
    [15] C.-H. Liao, T.-P. Wang and T.-D. Chiueh, “A 74.8mW soft-output detector IC for 8×8 spatial-multiplexing MIMO communications,” IEEE J. Solid-State Circuit, vol. 45, no. 2, pp. 411-421., 2010
    [16] T.-P. Wang and T.-D. Chiueh, “Design of a New Complex Sphere Decoder for Soft-Output MIMO Detection” National Taiwan University thesis, 2007.
    [17] M. Shabany, K. Su, and P. G. Gulak, “A pipelined scalable high-throughput implementation of a near-ML K-best complex lattice decoder,” in Proc. ICASSP, 2008, pp. 3173-3176.
    [18] S. Yazdi, T. Kwasniewski, “Configurable K-best MIMO Detector Architecture”in Proc. ISCCSP, 2008, pp. 1565 – 1569.
    [19] M. Shabany, and P. G. Gulak, “A 0.13μm CMOS 655Mb/s 4×4 64-QAM K-best MIMO detector,” in Proc. IEEE Int, Solid-State Circuits Conf., Feb. 2009, pp. 256-257.
    [20] C.-J. Huang, C.-W. Yu, and H.-P. Ma, “A power-efficient configurable low-complexity MIMO detector,” IEEE Trans. Circuit and Syst.-I: Regular Papers, vol. 56, no. 2, pp. 485-496., Feb. 2009.
    [21] H.-L. Lin, R. C. Chang, and H.-L. Chen, “A high-speed SDM-MIMO decoder using efficient candidate searching for wireless communication,” IEEE Trans. Circuit and Syst.--II: Express Briefs, vol. 55, no. 3, pp. 289-293., Mar. 2008.
    [22] B. M. Hochwald and S. ten Brink,”Achieving near-capacity on a multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399., Mar. 2003.
    [23] L. C. Godara,”Application of antenna arrays to mobile communications, part II: Beam-forming and direction-of-arrival considerations,” Proc. IEEE, vol. 85, no. 8, pp. 1195-1245., Aug. 1997.
    [24] C.-H. Yang, D. Marković, “A Flexible DSP Architecture for MIMO Sphere Decoding,” IEEE Trans. Circuit and Syst.-I: Regular Papers, vol. 56, no. 10, Oct. 2009.
    [25] R. Shariat-Yazdi and T. Kwasniewski,”A Multi-mode Sphere Detector Architecture for WLAN Applications” IEEE SOC Confrerence, Sep, 2008, pp. 155-158.
    [26] D. Garrett, L. Davis, S. Brink, B. Hochwald, G. Knagge,”Silicon Complexity for Maximum Likelihood MIMO Detection Using Spherical Decoding,” IEEE Int, Solid-State Circuits Conf.,vol. 39, no. 9, Sep. 2004.
    [27] P.-Y. Tsai, X.-C. Lin, “Improved K-best Sphere Decoder with a Look-ahead Technique for Multiple-Input Multiple-Output Systems” IEEE ISPACS, Feb. 2008, pp.1-4.
    [28] B.-S. Kim, K. Choi, “SNR Measurement-Free Adaptive K-Best Algorithm for MIMO Systems” IEEE WCNC, Apr. 2008, pp. 628-633.
    [29] S. Mondal, A. M. Eltawil, K. N. Salama, “Architectural Optimizations for Low-Power K-Best MIMO Decoders” IEEE Trans. Vechicular Tech., vol. 58, no. 7, Sep. 2009.

    QR CODE
    :::