跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江昌鴻
Chang-Hung Chiang
論文名稱: 摻釕鈮酸鋰單晶生長及其特性之研究
Growth and properties of Ru-doped lithium niobate crystals
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 122
中文關鍵詞: 非揮發式全像記憶光折變性質柴式長晶法鈮酸鋰
外文關鍵詞: nonvolatile holographic storage, Photorefractive properties, Czochralski method, LiNbO3
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多年來,光折變材料運用在全像記憶儲存的應用上受到廣泛的研究,而鈮酸鋰晶體因為擁有良好的光電及非線性光學係數,且可利用柴氏長晶法生長大尺寸且高品質的晶體,因此成為最熱門的光折變材料之一。然而,未摻雜鈮酸鋰晶體的光折變性質相對地較差,通常可透過摻雜一些過渡金屬離子增強晶體的光折變性質,因此本研究是利用自行架設的柴氏長晶系統生長各種不同濃度的摻釕共熔配比鈮酸鋰(Ru:LiNbO3)晶體。摻釕鈮酸鋰晶體的顏色為紅色,且隨著摻雜濃度的增加,晶體顏色也會慢慢的加深。而在晶體生長過程中,由於釕離子在鈮酸鋰晶體中的偏析係數大於1,且RuO2會揮發的因素,釕濃度會沿著晶體生長方向慢慢的減少。然而,在Ru:LiNbO3中存在一摻雜濃度極限值,晶體中最大的釕濃度大約為0.2mol%。此外,摻釕鈮酸鋰的A軸與C軸的晶格常數隨著摻雜濃度的增加而減少。透過紫外可見光吸收光譜的檢測顯示了摻釕鈮酸鋰有兩個明顯的吸收峰值位於370nm和530nm附近,隨著濃度的增加,吸收係數也會增加,而且吸收邊會往較長波長偏移。另外,透過OH-吸收光譜顯示在我們目前的摻雜濃度下, Ru離子在晶體當中同時取代Li空缺(V-Li)及反位鈮( )的位置。
    由於Ru:LiNbO3存在一吸收峰位於可見光波段的530nm附近,因此我們利用532nm固態雷射去瞭解晶體的光折變特性。我們在0.12mol%的Ru:LiNbO3中發現了最大的繞射效率約為71%,而且繞射效率隨著摻雜量增加而提升。透過黑暗衰減的實驗發現Ru離子的能階低於Fe離子的能階,且摻雜量越多,衰減速率越快。我們也發現Ru:LiNbO3有一較短的消除時間,且隨著消除光的能量增加而遞減,此外晶體的光敏感度與動態範圍也將由於Ru摻雜到晶體中而提升。
    透過氧化及還原處理改變釕離子的價數,我們也將瞭解熱處理對於Ru:LiNbO3晶體的光折變特性的影響。當晶體經過氧化處理過後的有較小的增益係數和繞射效率,因為在淺能階的載子都往深能階移動,造成淺能階的載子無法被532nm雷射所激發。另外,晶體經還原處理過後的有較大的增益係數和繞射效率是因為存在比較淺能階的Ru3+離子的濃度增加所造成的。
    利用氣相傳輸平衡法(VTE)可將利用柴氏法生長出的共熔配比摻釕鈮酸鋰(Ru:CLN)轉換成化學計量配比(Ru:SLN)。當我們增加VTE的反應時間時,晶體內部的[Li]/[Nb]的比例也將慢慢增加,經過200小時的VTE處理後即可得到近化學計量配比摻釕鈮酸鋰。透過532nm雷射的雙波混和實驗檢測其光折變性質可知,Ru:SLN晶體相對於共熔配比晶體有較大的增益係數,較小的繞射效率,較快的反應時間,以及較高的光靈敏度。
    通常釕離子有三種不同的價數,且各存在不同的能階上。透過藍光的照射,在晶體的光致吸收光譜中可發現位於480和530nm處有兩個吸收峰值產生,因此證明Ru:LiNbO3晶體中有深淺能階的存在,所以摻釕鈮酸鋰晶體可用於非揮發性的全像儲存上。經由非揮發性實驗檢測中發現,當晶體經過藍光的照射之後,可提升晶體的繞射效率與反應時間,而還原晶體比氧化晶體有較高的繞射效率,但只有在氧化的晶體中才可實現非揮發性全像記憶。


    Photorefractive materials have been widely investigated in holographic data storage application for many years. One of the most popular photorefractive crystals is lithium niobate (LiNbO3) for the fact that it has large electro-optical and nonlinear optical coefficients, and it can be easily grown into a large size with excellent optical quality. However, un-doped congruent LiNbO3 crystals usually have relatively poor photorefractive properties. One of the most effective methods to enhance their performance is to add a small amount of transition metal ions. In this study, Ruthenium (Ru) doped lithium niobate (LiNbO3) single crystals with different Ru concentrations were grown by the Czochralski method from a congruent melt composition. The color of the Ru: LiNbO3 was red and darkened with increasing Ru concentration. The Ru concentration in the grown crystal gradually decreased along the pulling direction because the effective segregation coefficient of Ru in lithium niobate is greater than one, and also because RuO2 evaporated during the crystal growth period. However, a solubility limit does exist in Ru: LiNbO3 crystals, so the maximum amount of Ru doped into LiNbO3 single crystals is about 0.2 mol%. In addition, the lattice constants of Ru: LiNbO3 on the A- and C-axis decreased with the concentration of Ru in the crystal. An absorption spectra examination of Ru: LiNbO3 showed that there were two absorption peaks around 370nm and 530nm that is within the UV/VIS region. The absorption coefficients should increase, and the absorption edges shift toward longer wavelength as the Ru concentration increases. The OH- absorption spectra confirm that Ru ions may have substituted for both Li vacancies (V-Li) and antisite Nb ions ( ) as the Ru doping concentration in the present case is well below the threshold limit.
    We investigated the photorefractive properties of Ruthenium (Ru)-doped LiNbO3 crystal with absorption peak around 530nm via 532nm solid-state laser. Maximum measurement reached 71% recorded for the 0.12mol%Ru:LiNbO3 crystal recording; the diffraction efficiency of the crystals increased with the Ru concentration. The dark decay time constant of Ru:LiNbO3 decreased with the Ru concentration and it could be deduced that in lithium niobate the energy level of Ru center was shallower than the Fe center. The erasing time constant of Ru:LiNbO3 crystals was short and decreased with the erasing beam intensity. Furthermore, both the sensitivity and dynamic range of the crystal could also be improved with Ru center into the lithium niobate.
    The effect of post treatment on the photorefractive properties of Ru-doped lithium niobate was also studied. It was found that the oxidized Ru:LiNbO3 had smaller exponential gain coefficient and diffraction efficiency because the charges in the shallow level were exchanged to the deep level. On the other hand, the reduced Ru:LiNbO3 crystals had larger exponential gain coefficient and diffraction efficiency due to the increase of the Ru3+ which existed in the shallow level.
    Ruthenium (Ru)-doped near-stoichiometric lithium niobate crystals (Ru: SLN) were prepared by the vapor transport equilibration (VTE) technique from Ru-doped congruent lithium niobate grown using the Czochralski method. Increasing the duration time of the VTE treatment would cause the ratio of [Li]/[Nb] in the crystal to increase. When the VTE treatment time reached 200 hours, Ru-doped near-stoichiometric lithium niobate crystals were obtained. Two-beam coupling examination with a 532nm laser showed that the Ru-doped near-stoichiometric lithium niobate crystals had a larger exponential gain coefficient, lower diffraction efficiency, faster response time, and higher sensitivity than did the Ru-doped congruent lithium niobate crystals.
    Ru ions have three valences, Ru3+, Ru4+, and Ru5+, and these ions have different energy levels in crystal. An examination of the blue light-induced absorption change shows two peaks around the 480nm and 532nm. If the Ru:LiNbO3 crystals had deep and shallow levels, there would be light-induced absorption change peaks. So Ru:LiNbO3 can be considered a good candidate to be used for nonvolatile holographic storage. In the examination of the nonvolatile holographic storage experiment, the diffraction efficiency and the response of the crystal can be improvde by blue light illumination. In addition, the reduced Ru-doped lithium niobate crystal has larger diffraction efficiency than oxidized one. But only the oxidized Ru:LiNbO3 crystal can be successfully used in doing nonvolatile holographic recording.

    摘要 I Abstract III 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XII 符號說明 XV 第一章 緒論 1 1-1 前言 1 1-2 鈮酸鋰材料簡介 2 1-2-1 鈮酸鋰晶體之特性 2 1-2-2 共熔配比鈮酸鋰(CLN)與化學計量配比鈮酸鋰(SLN) 4 1-2-3 鈮酸鋰晶體的摻雜 6 1-2-4 鈮酸鋰光折變效應 8 1-2-5 鈮酸鋰全像記憶 9 1-3 鈮酸鋰晶體的生長 11 1-3-1 柴氏提拉法 11 1-3-2 熱場與晶體生長之關係 12 1-3-3 流場與晶體生長之關係 12 1-3-4 生長方向對鈮酸鋰晶體型態的影響 13 1-3-5 摻雜對鈮酸鋰晶體生長的影響 14 1-4 研究動機與目的 15 圖表18 第二章 實驗流程、設備、及檢測 30 2-1 粉末的配置 30 2-2 晶體生長 31 2-1-1 晶體生長設備系統 31 2-1-2 晶體生長步驟 35 2-3 晶體切割、研磨拋光、及後處理 36 2-3-1 晶體切割 36 2-3-2 晶體研磨拋光 37 2-3-3 氣氛處理(晶體氧化還原後處理) 38 2-3-4 氣相傳輸平衡法 38 24 晶體檢測 39 圖45 第三章 摻釕鈮酸鋰晶體生長 56 3-1晶體生長參數對晶體品質的影響 56 3-1-1 溫場對鈮酸鋰晶體品質的影響 56 3-1-2 流場對鈮酸鋰晶體品質的影響 58 3-1-3 放肩速率對鈮酸鋰晶體型態的影響 59 3-2 摻釕鈮酸鋰晶體 59 3-2-1摻釕鈮酸鋰晶體生長 59 3-2-2 摻釕鈮酸鋰的鐵電域觀察 60 3-2-3摻釕鈮酸鋰晶體濃度分佈 62 3-2-4摻釕鈮酸鋰晶格常數 64 3-2-5 摻釕鈮酸鋰的UV/VIS吸收光譜 65 3-2-6 摻釕鈮酸鋰的紅外光吸收光譜 66 圖68 第四章 摻釕鈮酸鋰的光折變特性 79 4-1 As-Grown Ru:LiNbO3晶體光折變特性 79 4-2-1 摻釕鈮酸鋰晶體之吸收光譜 80 4-1-2 Ru:LiNbO3晶體繞射效率 80 4-1-3 Ru:LiNbO3晶體黑暗衰減 82 4-1-4 Ru:LiNbO3清除的時間參數 83 4-1-4 Ru:LiNbO3光敏感度與動態範圍 85 4-2 熱處理對於Ru:LiNbO3晶體光折變特性的影響 86 4-2-1 熱處理對摻釕鈮酸鋰價數影響 87 4-2-2 熱處理對晶體UV/VIS吸收光譜影響 87 4-2-3 熱處理對晶體UV/VIS光折變性質的影響 88 4-3 近化學計量配比摻釕鈮酸鋰晶體的光折變特性 90 4-3-1 近化學計量配比摻釕鈮酸鋰UV/VIS吸收光譜 91 4-3-2 近化學計量配比摻釕鈮酸鋰OH-吸收光譜 93 4-3-3 近化學計量配比摻釕鈮酸鋰光折變性質 93 4-4 摻釕鈮酸鋰非揮發式全像記憶 94 4-4-1 摻釕鈮酸鋰光致吸收光譜 94 4-4-2 摻釕鈮酸鋰非揮發性全像記憶 95 圖表97 第五章 結論 111 參考文獻 114

    1. H. Coufal, G. Sincerbox, D. Psaltis (Eds.), “Holographic Data Storage,” Springer, New York (2000)
    2. 李銘華, 楊春暉, 徐玉恒 等著, “光折變晶體材料科學導論”, 高等教育出版社2003
    3. P. Günter and J. P. Huignard ed., “Photorefractive Materials and their Applications ,” Vol. 1 ( Berlin:Springer-Verlag, 1988)
    4. P. Günter, “Holography, coherent-light amplification and optical-phase conjugation with photorefractive materials,” Phys. Rep., 93 (1982) 199.
    5. E. Krätzig and R. Sommerfeldt, in: Proc. SPIE, Vol. 1273, Nonlinear Optical Materials (1990) 2.
    6. D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for real-write applications,” Appl. Optics, 13 (1974) 788.
    7. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett., 18 (1993) 915.
    8. K. Buse, A. Adibi, and D. Psaltis, ”Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature, 393 (1998) 665.
    9. Y. Liu, L. Liu, and C. Zhou, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett., 25 (2000) 908.
    10. Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, and T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett., 81 (2002) 2686.
    11. Y. Tomita, M. Hoshi, and S. Sunarno, “Nonvolatile Two-Color Holographic Recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys., 40 (2001) 1035.
    12. W. H. Zachariasen, Skr. Norske Vid-Ada, Oslo, Mat. Naturv. No.4 (1928)
    13. B. T. Matthias and J.P.Remeika, “Ferroelectricity in the illmenite structure,” Phys. Rev., 76 (1949) 1886.
    14. A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., 48 (1965) 112.
    15. S. C. Abrahams, J. M. Reddy and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24℃,” J. Phys. Chem. Solids, 27 (1966) 997.
    16. S. C. Abrahams, W.C. Hamilton and J. M. Reddy, “Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24℃,” J. Phys. Chem. Solids, 27 (1966) 1013.
    17. S. C. Abrahams, H. J. Levinstein and J. M. Reddy, “Ferroelectric lithium niobate.5. Polycrystal X-ray diffraction study between 24℃and 1200℃,” J. Phys. Chem. Solids, 27 (1966) 1019.
    18. H. D. Megaw, “A note on the structure of lithium niobate,” Acta Crystallogr., A24 (1968) 583.
    19. S.C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., B42 (1986) 61.
    20. P. K. Gallagher, H.M. O’Bryan, “Characterization of LiNbO3 by dilatometry and DTA,” J. Am. Ceram. Soc., 68 (1985) 147.
    21. A. Yariv and P. C. Yeh, “Optical Waves in Crystal,” John Wiley& Sons, Inc. 1984.
    22. A. Reisman, F. Holtzberg, and E. Banks, “Reaction of the Group VB pentoxides with Alkali Oxides and Carbonates. VII. Heterogeneous Equilibria in the system Na2O or Na2CO3-Nb2O5,” J. Am. Chem. Soc., 80 (1958) 35.
    23. A. Reisman, F. Holtzberg, “ Heterogeneous Equilibria in the Systems Li2O-, Ag2O-Nb2O5 and Oxide-Models,” J. Am. Chem. Soc., 80 (1958) 6503.
    24. S. A. Fedulov, Z. I. Shapiro and P. B. Ladyzhinsky, “The growth of crystals of LiNbO3. LiTaO3, and NaNbO3 by the Czochralski method,” Sov. Phys.- Crystallogr/ 10 (1965) 218.
    25. P. Lerner, C. Legras, and J. P. Duman, “Stoichiometric des monocristaux de metaniobate delithium,” J. Crystal Growth, 3/4 (1968) 231.
    26. J. G. Bergamn, A. Ashkin, A.A. Ballman, J. M. Dziedzic, H. J. Levinstein and R. G. Smith,”Curie temperature, briefrigence and phase-matching temperature variations in LiNbO3 as a function of melt stoichiometry”, Appl. Phys. Lett., 12 (1968) 92.
    27. L. O. Svaasand, M. Eriksrud, G. Nakken, A. P. Grande, and F. Mo, “Crystal growth and properties of LiNb3O8,” J. Crystal Growth, 18 (1973) 179.
    28. L. O. Svaasand, M. Eriksrud, G. Nakken, A. P. Grande, “Solid-solution range of LiNbO3,” J. Crystal Growth, 22 (1974) 230.
    29. http://www.opt-oxide.com/english/product/hikaku_ln.html, Copyrights © 2003-2005 Oxide Corporation.
    30. 孔勇發, 許京軍, 張光寅, 劉思敏, 陸崎, “多功能光電材料—鈮酸鋰晶體,” 科學出版社2005
    31. H. Fay, W. J. Alford, H. M. Dess, “Dependence of second harmonic phase matching temperature in LiNbO3 crystals on composition,” Appl. Phys. Lett., 12 (1968) 69.
    32. G. E. Peterson, A. Lernevale, “93Nb NMR Linewidths in Nonstoichiometric Lithium Niobate,” J. Chem. Phys., 56 (1972) 4848.
    33. S. C. Abrahams, P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Cryst., B, 42 (1986) 61.
    34. N. Iyi, K. Kitamura, F. Izumi, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem, 10 (1992) 340.
    35. G. Zhong, J. Jin, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate,” In Proceedings of the 11th International Quantum Electronics(Institute of Electrical and Electronics Engineers, New York (1980) 631.
    36. T. Volk, M. Wőhlecke and N. Rubinina, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithum niobate,” Ferroelectrics, 183 (1996) 291.
    37. R. V. Schmidt, I. P. Kaminow, “Metal–diffused optical waveguides in LiNbO3,” Appl. Phys Lett, 25 (1974) 458.
    38. Y.J. Lai, J.C. Chen, “The influence of heavy iron-doping on LiNbO3 fibers and their growth,” J. Crystal Growth, 212 (2000) 211.
    39. K. Kawasaki, Y. Okano, S. Kan, M. Sakamoto, K. Hoshikawa, T. Fukuda, “Uniformity of Fe doped LiNbO3 single crystal grown by the Czochralski method,” J. Crystal Growth, 119 (1992) 317.
    40. Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate, ” Appl. Phys. Lett., 81 (2002) 2686.
    41. I. Pracka, A. L. Bajor, S. M. Kaczmarek, M. Swirkowicz, B. Kazmarek, J. Kisielewski, T. Lukasiewicz, ”Growth and Characterization of LiNbO3 Single Crystals Doped with Cu and Fe Ions,” Cryst. Res. Technol., 34 (1999) 627.
    42. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G.Smith, A. A. Ballman, J. J. Levinstein and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett., 9 (1966) 72
    43. N. V. Kukhtarev, V. B. Markov, S. G. Odoulove, M. S. Soshkin, and V. Vinetskii, “Holographic storage in electrooptic crystal I. Steady state”, Ferroelectrics 22 (1979) 949.
    44. J. Feinberg, D. Heiman, A. R. Tangrary, Jr. and R. Hellwarth, “Photorefractive effects and light-induced charge migrating in barium titanate”, J. Appl. Phys., 51 (1980) 1297.
    45. P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive materials”, J. Appl. Phys., 5 (1991) 4082.
    46. K. Buse, E. Kratzig, “Three-valence charge-transport model for explanation of the photorefractive effect”, Appl. Phys. B, 61, 27(1995).
    47. J. J. Amodei, D L Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett., 18 (1971) 540.
    48. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett., 20 (1972) 79.
    49. A. A. Ballman, H. J. Levinstein, C. D. Capio, “Curie. Temperature and Birefringence Variation in Ferroelectric Lithium Metatan-. talate as a Function of Melt Stoichiometry,” J. Am. Ceram. Soc., 50 (1967) 657.
    50. 胡榮章, “MgO:LiNbO3 單晶生長及其特性之研究”,博士論文,國立成功大學礦冶及材料科學研究所, 1991.
    51. 胡明理, “Zn:LiNbO3 單晶生長及其特性研究” 博士論文,國立中央大學光電科學研究所, 2004.
    52. 胡杰, “離子晶體服區熔解過程中熱輻射、熱流與相介面, ” 博士論文,國立中央大學機械工程研究所, 1996
    53. 李有璋, “光折變晶纖生長及其特性研究” 博士論文,國立中央大學機械工程研究所, 1998
    54. 賴彥志, “雜質與組成對鈮酸鋰晶纖生長以及結構之影響” 博士論文,國立中央大學機械工程研究所, 2000
    55. 陳智勇, “雷射加熱提拉生長法生長不同配比鈮酸鋰晶纖與性質之量測” 博士論文,國立中央大學機械工程研究所, 2006.
    56. 夏海平, ”Growth of Fe-doped LiNbO3 single crystal by Bridgman method,” Materials Letter, 20 (2004) 58
    57. 蔡淳博, “等化學計量比鈮酸鋰單晶區熔提拉製成之開發研究” 博士論文,國立台灣大學化學工程研究所, 2005.
    58. J. Czochralski, “Ein neues Verfahren zur Messung der kristallisationsgeschwindigheit der Metalle,”Z. Phys. Chemie., 92 (1918) 219.
    59. G. K. Teal and J. B. Little, “Growth of germanium single crystals,” Physical Review, 78 (1950) 647.
    60. 閩乃本, “晶體生長的物理基礎”, 上海科學技術出版社, 1982.
    61. N. Niizeki, T. Yamada, H. Toyoda, “Growth. Ridges, Etched Hillocks, and Crystal Structure of Lithium Niobate,” Japan. J. Appl. Phys, 6 (1967) 318.
    62. J. A. Burton, R. C. Prim and W. P. Slichter, “The distribution of solute in crystals grown from the melt. Part I. theoretical”, Journal of Chemical Physics, 21 (1953) 1987.
    63. C. H. Chiang, J. C. Chen, “Growth and properties of Ru-doped lithium niobate crystals,” J. Crystal Growth, 294 (2006) 323.
    64. K. Buse, H. Hesse, U.van Stevendaal, S. Loheide, D. Sabbert, E. Kratzig, ” Photorefractive properties of ruthenium-doped potassium niobate,” Appl. Phys., A 59 (1994) 563
    65. C. H. Lin, C. Y. Huang, and J. Y. Chang, “Increasing the conductivity of photorefractive BaTiO3 single crystals by doping Ru,” Appl. Surf. Sci. 208-209 (2003) 340
    66. V. Marinova, M. L. Hsieh, S. H. Lin, and K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals," Opt. Commun. 203 (2002) 377.
    67. R. Fujimura, E. Kubota, O. Matoba, T. Shimura, and K. Kuroda, “Photorefractive and photochromic properties of Ru doped Sr0.61Ba0.39Nb2O6 crystal,” Opt. Commun. 213 (2002) 373.
    68. V. Marinova, S. H. Lin, K. Y. Hsu, M. L. Hsieh, M. M. Gospodinov, and V. Sainov, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals, ” Opt. Comm., 203, (2002) 377.
    69. F. Ramaz, L. Rakitina, M. Gospodinov, and B. Briat, “Photorefractive and photochromic properties of ruthenium-doped Bi12SiO20 ,” Opt. Mater. 27 (2005) 1547.
    70. R. Fujimura, T. Shimura, and K. Kuroda, Trends in Optics and Phonics Series, 87 (2003) 660.
    71. 陳智勇, “雷射柴氏生長鈮酸鋰塊晶之研究分析” 碩士論文,國立中央大學機械工程研究所, 2004.
    72. 許金明, 陳世鐘, “ 金相指導手冊,” 鋒寰科技顧問出版;金達科技發行, 2003
    73. 黃子民, “利用氣象傳輸平衡產生進化學計量配比之摻釕鈮酸鋰晶體特性之研究” 碩士論文,國立中央大學機械工程研究所, 2007.
    74. G.D. Boyd, W. L. Bond, and H. L. Carter, “refractive Index as a Function of Temperature in LiNbO3,” J. Appl. Phys., 38 (1967) 1941.
    75. K. Nassau, H. J. Levinstein, G. M. Loiacomo, Appl. Phys. Lett, 6 (1965) 228.
    76. D. Sun, J. Xiao, L. Zhang, Y. Hang, S. Zhu, A. Wang, S, Yin, “Study on the growth facets and ferroelectric domains in near-stoichiometric LiNbO3 crystals,” J. Crystal Growth 262(2004)240.
    77. J. K. Choi, K. H. Auh, “Stress induced domain formation in LiNbO3 single crystals,“ J. mater. sci., 31 (1996) 643.
    78. K. Kitamura, S. Kimura, S. Hosoya, J. Crystal Growth, 48 (1980)469.
    79. J.C. Chen, Y.C. Lee, C. Hu, “A simple method of examining the propagation of defects in the floating-zone solidification process of lithium niobate,” J. Crystal Growth, 166 (1996) 151.
    80. H. Takei, T. Katsumata, “A phase relation between congruently melting LiNbO3 and Fe2O3 ,” Mater. Res. Bull., 17 (1982) 111.
    81. R. D. Shannon, and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta. Crystallogr. B, 25 (1969) 925.
    82. M. Ohira, Z. Chen, T. Kasanmatsu, " Crystal Growth of LiNbO3:Fe and Its Photorefractive Properties,” Jpn. J. Appl. Phys., 30 9B (1991) 2326.
    83. G. Bhagavannarayana, R. V. Ananthaamurthy, G.C.Budakoti, B. Kumar and K.S.Bartwal, “A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR,” J. Appl. Cryst., 38 (2005) 768.
    84. N. Iyi, K. Kitamura, Y. Yajima, S.Kimura, “Defect Structure Model of MgO-Doped LiNbO3,“ J. Solid State Chem., 118(1995)148.
    85. I. Pracka, A. L. Bajor, S. M. Kaczmarek, M. Swirkowicz, B. Kazmarek, J. Kisielewski, T. Lukasiewicz, “A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR,” Cryst. Res. Technol., 34(1999) 627.
    86. M. Cochez, M. Ferriol, P. Bourson, M. Aillerie, “Influence of the dopant concentration on the OH− absorption band in Fe-doped LiNbO3 single-crystal fibers,” Optical Materials, 21(2003)775.
    87. M. H. Yukselici, R. Ince, A. T. Ince, ” Data storage characteristics of iron doped LiNbO3. under a 90 degrees geometry two-beam coupling configuration,” Opt. Laser Eng, 42 (2004) 277.
    88. D. K. McMillen, T. D. Hundson, J. Wagner, and J. Singleton, “Holographic recording in specially doped lithium niobate crystals,” Opt. Express, Vol. 2, No. 12 (1998) 491.
    89. Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett., 78 (2001) 4076.
    90. Y. Yang, D.Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B, Vol. 20, No. 7 (2003) 1491.
    91. F. Mok, G. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett, 21 (1996) 896.
    92. G.W. Burr, D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms.” Opt. Lett., 21 (1996) 893,
    93. M. H. Li, Q. Y. Zhao, K. B. Xu et al., “Oxidation and reduction treatment of photorefractive Fe: LiNbO3 crystal,” Chin. Sci. Bull., 41 (8) (1996) 655.
    94. T. Volk, N. Rubinina, M. Wőhlecke, “Optical-damage-resistant impurities in lithium niobate," J. Opt. Soc. Am. B, 11 (1994) 1681.
    95. X. Sun, Q. Meng, C. Hou, D. Gong, S. Luo, and Z. Zhou, “The effect of reduction treatment on the photorefractive properties of Zn:Fe:LiNbO3 crystal, “ Opt. Comm., 247, 233 (2005).
    96. K. Kitamura, Y. Furukawa, and N. IYI, “Progress in single crystal growth. of LiNbO3 using double crucible Czochralski method,” Ferroelectrics, 202 (1997) 21
    97. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys., 82 (1997) 1006
    98. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of Stoichiometric LiNbO3 Grown from Melts Containing K20, “Appl. Phys., A56 (1993) 103
    99. K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth, 116 (1992) 327
    100. K. Polgár, Ả. Péter, L. Kovács, G. Corradi, Zs. Szaller, “Growth of stoichiometric. LiNbO. 3. single crystals by top seeded solution growth method,” J. Cryst. Growth, 177 (1997) 211.
    101. K. Polgár, Ả. Péter, I. Földvári, Opt. Mater., 19 (2002) 7.
    102. D. Q. Ni, W. Y. Wang, D. F. Zhang, X. Wu, X. L. Chen, K. Q. Lu, “Near-stoichiometric LiNbO3 single-crystal growth by metal strip-heated zone melting technique.” J. Cryst. Growth, 263 (2004) 421.
    103. C. Y. Chen, J. C. Chen, Y. J. Lai, “Investigations of the growth mechanism of stoichiometric LiNbO3 fibers grown by the laser-heated pedestal growth method,” J. Cryst. Growth, 275 (2005) E769.
    104. C. Y. Chen, J. C. Chen, C. T. Chia, “Growth and Optical Properties of Different Compositions of LiNbO3 Single Crystal Fibers, “Opt. Mater. (2007) in press.
    105. R.L. Holman, P. J. Cressman, and J. F. Revelli, “Chemical control of optical damage. in lithium niobate,” Appl. Phys. Lett., 32(5) (1978) 280.
    106. P. F. Bordui, R. G. Norwood, D. H. Jundt, M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys., 71 (1992) 875.
    107. I. Főldvári, K. Polgár, R. Voszka, R. N. Balasanyan, “A simple method to determine the real composition of LiNbO3 crystals” Cryst. Res. Technol., 19 (1984) 1659
    108. M. Wőhlecke, G. Corradi, K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B, 63 (1996) 323
    109. L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wőhlecke, “Optical quality pure and Mn doped near stoichiometric lithium niobate (SLN) crystals,”Appl. Phys. Lett. 70 (21) (1997) 2801
    110. M. D. Serrano, V. Bermứdez, L. Arizmendi, E. Diéguez, “Determination of the Li/Nb ratio in LiNbO3 crystals grown by Czochralski method with K2O added to the melt, “ J. Crystal Growth, 210 (2000) 670.
    111. Y. J. Chen, J. P. Wen, Y. F. Kong, S. L. Chen, W. L. Zhang, J. J. Xu, G. Y. Zhang, “Effect of Li diffusion in the composition of LiNbO3 at high temperature,” J. Crystal Growth, 242 (2002) 400.
    112. H. L. Wang, Y. Hang, J. Xu, L. H. Zhang, Y. Y. Zhu, “Near-stoichiometric LiNbO3 crystal grown using the Czochralski method from Li-rich melt,” materials letters, 58 (2004) 3119
    113. Y. Xu, W. Xu, S. Xu, B. Wang, “Effect of Li/Nb ratio on growth and photorefractive properties of Ce:Fe:LiNbO3 crystals,” Opt. Commun., 23 (2003) 305
    114. Y. Furukawa, Y. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, P. Gunter, “Photorefractive properties of iron doped stoichiometric. lithium niobate,” Opt. Lett., 22 (1997) 501
    115. S. Fang, B. Wang, T. Zhang, F. Ling, R. Wang, “Growth and photorefractive properities of Zn, Fe double-doped LiTaO3 crystal,” Opt. Mater., 28 (2006) 207

    QR CODE
    :::