| 研究生: |
邱奕華 Yi-Hua Chiu |
|---|---|
| 論文名稱: |
即時串流資料品質綜效架構之研發:以工業蒸汽鍋爐感測設備為例 A Study of Multi-dimensional Data Quality Framework for Online Data Stream: A Case of Industrial Steam Boiler Sensing Equipment |
| 指導教授: |
陳仲儼
C.Y. Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 資料品質 、串流資料 、資料窗格 、工業感測設備資料 、工業蒸汽鍋爐 |
| 外文關鍵詞: | Data Quality, Data Stream, Data Window, Industrial Sensing Equipment Data, Industrial Steam Boilers |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今資訊化的時代下,資料品質之良窳對於企業營運具有重大且關鍵的影響,在工業領域中,工業感測設備串流資料的品質所扮演的角色亦是如此。然而,現有品質控制之常見方式,主要著重於錯誤偵測與遺漏值偵測,即僅針對資料產出的結果做考慮,卻忽略了在即時串流資料上可能也會引發相異的品質問題。因此,本研究旨在以串流資料的性質以及工業感測設備應用的訴求之下,提出一全面性的即時串流資料品質綜效架構(a Multi-dimensional Data Quality framework for online Data Stream, 簡稱MDQDS)。同時,透過這一架構所建立的三個品質構面指標—準確性、完整性、一致性,以及其具體測試規則協助設備操作人員能即時地從不同面向來掌握設備資料的各種品質。在實務應用上,本研究依據所提出的架構,實作出一個應用程式MDQDSS(MDQDS System)以幫助設備操作人員能適時且有效的提升與維護工業感測設備資料之品質,並以工業蒸汽鍋爐感測設備的串流資料為例。並且,為了驗證本研究提出的架構與所實作出之系統的可行性,本研究亦將MDQDSS應用於紡織工業蒸汽鍋爐之感測設備資料中,來展示系統功能與使用情形最後,針對現有的運用與研究限制進行討論,並提出未來研究的可能方向。
In this information era, the quality of data is significant to enterprises. In industry, the quality of streaming data of industrial Sensing Equipment also plays an important role in decision-making. However, the existing methods of streaming data quality control focus on error detection and missing values detection, which aim at neglect the quality problems arises from the data processes. Therefore, this research aims to propose a comprehensive framework of the quality of streaming data of industrial Sensing Equipment, termed Multi-dimensional Data Quality framework for online Data Stream (MDQDS). This framework is based on online state, especially focusing on the demand of the system characteristics of industrial sensing equipment and streaming data. Simultaneously, by the three quality dimensions—accuracy, completeness, and consistency—built by this framework, MDQDS can help observers from different views to handle a variety of online streaming data qualities. In the practical application, according to the proposed framework, this research implements an application, MDQDSS (MDQDS System), to help observers to increase and maintain the quality of streaming data of industrial sensing equipment. Moreover, to verify the feasibility of the proposed framework and the implemented system, this research applies MDQDS to the industrial steam boiler sensing equipment in H textile factory to demonstrate the proposed system and the test situation. Finally, discussion and suggestions are presented for the existing application and this research proposes the probable direction of the future work.
李志杰. (2016). 鍋爐燃燒懸浮粒子排放減量與節能燃燒技術. 特種機械設備安全(44), 8.
Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., . . . Zdonik, S. (2003). Aurora: a new model and architecture for data stream management. the VLDB Journal, 12(2), 120-139.
Alexandersson, H., & Moberg, A. (1997). Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of climatology, 17(1), 25-34.
Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data stream systems. Paper presented at the Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
Ballou, D. P., & Pazer, H. L. (1985). Modeling data and process quality in multi-input, multi-output information systems. Management science, 31(2), 150-162.
Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2009). Methodologies for data quality assessment and improvement. ACM computing surveys (CSUR), 41(3), 16.
Bonnet, P., Gehrke, J., & Seshadri, P. (2001). Towards sensor database systems. Paper presented at the International Conference on Mobile Data Management.
Carroll, O. (2017). Russian space programme close to collapse as latest failure exposes its fragility. The Independent. Retrieved from http://www.independent.co.uk/
Chen, C.-Y., Kuo, C.-Y., & Chen, P.-C. (2007). A Preliminary Study of Data Quality Measure with the Emphasis on Error Criticality. Paper presented at the IIE Annual Conference. Proceedings.
Chen, C.-Y., & Wolfe, P. (2005). An object-oriented quality framework and optimization models for comprehensively understanding and managing data quality in data warehouse applications. International Journal of Operations Research, 2(2), 1-8.
Fiebrich, C. A., Morgan, C. R., McCombs, A. G., Hall Jr, P. K., & McPherson, R. A. (2010). Quality assurance procedures for mesoscale meteorological data. Journal of Atmospheric and Oceanic Technology, 27(10), 1565-1582.
Geisler, S., Quix, C., Weber, S., & Jarke, M. (2016). Ontology-based data quality management for data streams. Journal of Data and Information Quality (JDIQ), 7(4), 18.
Geisler, S., Weber, S., & Quix, C. (2011). An ontology-based data quality framework for data stream applications. Paper presented at the 16th International Conference on Information Quality.
Gitzel, R. (2016). Data Quality in Time Series Data: An Experience Report. Paper presented at the CBI (Industrial Track).
Golab, L., & Özsu, M. T. (2003). Issues in data stream management. ACM Sigmod Record, 32(2), 5-14.
Haque, A. (2017). Semi-supervised Adaptive Classification over Data Streams.
Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. Paper presented at the System Sciences (HICSS), 2016 49th Hawaii International Conference on.
Hubauer, T., Lamparter, S., Roshchin, M., Solomakhina, N., & Watson, S. (2013). Analysis of data quality issues in real-world industrial data. Paper presented at the Poster Presentation at the 2013 Annual Conference of the Prognostics and Health Management Society.
Jang, Y., Ishii, A. T., & Wang, R. Y. (1995). A qualitative approach to automatic data quality judgment. Journal of Organizational Computing and Electronic Commerce, 5(2), 101-121.
Janson, M. (1988). Data quality: the Achilles heel of end-user computing. Omega, 16(5), 491-502.
Jeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling & Software, 16(4), 309-330.
José Tarí, J. (2005). Components of successful total quality management. The TQM magazine, 17(2), 182-194.
Judah, S., & Friedman, T. (2014). Magic quadrant for data quality tools. Gartner.
Kesh, S. (1995). Evaluating the quality of entity relationship models. Information and Software Technology, 37(12), 681-689.
Klein, A., & Lehner, W. (2009). Representing data quality in sensor data streaming environments. Journal of Data and Information Quality (JDIQ), 1(2), 10.
Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). AIMQ: a methodology for information quality assessment. Information & Management, 40(2), 133-146.
Madnick, S. E., Wang, R. Y., Lee, Y. W., & Zhu, H. (2009). Overview and framework for data and information quality research. Journal of Data and Information Quality (JDIQ), 1(1), 2.
Martino, G. D., Fontana, N., Marini, G., & Singh, V. P. (2012). Variability and trend in seasonal precipitation in the continental United States. Journal of Hydrologic Engineering, 18(6), 630-640.
Meek, D., & Hatfield, J. (1994). Data quality checking for single station meteorological databases. Agricultural and Forest Meteorology, 69(1-2), 85-109.
Orr, K. (1998). Data quality and systems theory. Communications of the ACM, 41(2), 66-71.
Peck, E. L. (1997). Quality of hydrometeorological data in cold regions. JAWRA Journal of the American Water Resources Association, 33(1), 125-134.
Peterson, T. C., Easterling, D. R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., . . . Gullett, D. (1998). Homogeneity adjustments of in situ atmospheric climate data: a review. International Journal of climatology, 18(13), 1493-1517.
Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73-90.
Raghunathan, S. (1999). Impact of information quality and decision-maker quality on decision quality: a theoretical model and simulation analysis. Decision Support Systems, 26(4), 275-286.
Redman, T. C., & Blanton, A. (1997). Data quality for the information age: Artech House, Inc.
Sargent, P. (1992). Data quality in materials information systems. Computer-Aided Design, 24(9), 477-490.
Shankar, K. G. (2008). Control of boiler operation using PLC–SCADA. Paper presented at the Proceedings of the International MultiConference of Engineers and Computer Scientists.
Sila, I., & Ebrahimpour, M. (2005). Critical linkages among TQM factors and business results. International journal of operations & production management, 25(11), 1123-1155.
Strong, D. M. (1997). IT process designs for improving information quality and reducing exception handling: A simulation experiment. Information & Management, 31(5), 251-263.
Tayi, G. K., & Ballou, D. P. (1998). Examining data quality. Communications of the ACM, 41(2), 54-57.
Thai Hoang, D., Igel, B., & Laosirihongthong, T. (2006). The impact of total quality management on innovation: Findings from a developing country. International Journal of Quality & Reliability Management, 23(9), 1092-1117.
Wand, Y., & Wang, R. Y. (1996). Anchoring data quality dimensions in ontological foundations. Commun. ACM, 39(11), 86-95. doi:10.1145/240455.240479
Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of management information systems, 12(4), 5-33.
Yeh, C.-F., Wang, J., Yeh, H.-F., & Lee, C.-H. (2015). Spatial and temporal streamflow trends in northern Taiwan. Water, 7(2), 634-651.
Zahumenský, I. (2004). Guidelines on quality control procedures for data from automatic weather stations. World Meteorological Organization, Switzerland.