跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳信伊
Hsin-Yi Chen
論文名稱: 星狀座標之軸排列於群聚視覺化之應用
Axes Arrangement in Star Coordinates for Numerical Data Visualization
指導教授: 張嘉惠
Chia-Hui Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 51
中文關鍵詞: 資訊視覺化多維度星狀座標遺傳演算法
外文關鍵詞: Information Visualization, Multidimension, Star Coordinates, Genetic Algorithm
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 視覺化方法使用圖形來表達資料所包含的資訊,因為以圖解的方式比資料本身更能讓人一目了然。Star Coordinates是一種以座標軸為基礎的多維度資料視覺化方法,將每一筆資料投影到二維平面上的一個點,讓使用者在資料探勘的初期得到資料的概觀。本篇論文提出一種自動化座標軸排列方法應用於Star Coordinates,擷取多維度資料中各屬性的相關性,利用遺傳演算法計算出一組最佳化之座標軸排列方式,藉此調整Star Coordinates中座標軸的排列順序與夾角,增強資料的群聚現象以改善Star Coordinates視覺化的結果,並提供自動播放工具,呈現一系列經過座標軸排列後的圖形,使用者可以在觀看圖形的過程中獲得資料隱藏的資訊。透過自動化的座標軸排列,使用者可以省略複雜的座標軸操作,並藉由視覺化圖形分析多個維度之間的共同關係,觀看資料之間群聚的趨勢,並檢視資料分佈中的異常狀況,掌握資料的主要特徵。


    第1章 緒論.....................................................................................................................................- 1 - 1.1 本篇論文的貢獻........................................................................................................................- 3 - 1.2 論文架構...................................................................................................................................- 4 - 第2章 相關研究..............................................................................................................................- 5 - 2.1 降低維度的方法........................................................................................................................- 6 - 2.2 高維度資料視覺化方法............................................................................................................- 9 - 2.3 比較與討論..............................................................................................................................- 18 - 第3章 系統架構............................................................................................................................- 20 - 3.1 座標軸排列(AXES ARRANGEMENT)...................................................................................- 21 - 3.1.1 遺傳演算法(Genetic Algorithm)簡介.............................................................- 22 - 3.1.2 編碼(Encoding)...............................................................................................- 24 - 3.1.3 適應值的評估(Fitness evaluation)..................................................................- 25 - 3.1.4 交配與突變運算...................................................................................................- 29 - 3.2 自動播放(AUTO PLAY).......................................................................................................- 32 - 第4章 實驗結果與討論................................................................................................................- 34 - 4.1 座標軸排列的實驗..................................................................................................................- 35 - 4.2 評估方法.................................................................................................................................- 41 - 4.3 執行時間的評估......................................................................................................................- 42 - 4.4 自動播放.................................................................................................................................- 43 - 4.5 實驗討論.................................................................................................................................- 46 - 第5章 結論...................................................................................................................................- 47 - 參考文獻..............................................................................................................................................- 49 -

    [1]. E. Kandogan: “Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates”, In Proc. of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 107-116, 2001.
    [2]. G.. Dunn and B. Everitt: “An Introduction to Mathematical Taxonomy”, Cambridge University Press Cambridge, MA, 1982.
    [3]. H. H. Harman: “Modern Factor Analysis”, University of Chicago Press, 1967.
    [4]. R. N. Shepard, A. K. Romney, and S. B. Nerlove: “Multidimensional Scaling”, Seminar Press New York, 1972.
    [5]. C. Faloutsos and K. Lin: “Fastmap: A fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets”, In Proc. of ACM SIGMOD Int. Conf. on Management of Data, 1995.
    [6]. M. Ankerst: “Visual Data Mining”, Ludwig Maximilians Universität, München, 2001.
    [7]. D. A. Keim and H. P. Kriegel: “Visualization Techniques for Mining Large Databases, A Comparison”, Transactions on Knowledge and Data Engineering, Special Issue on Data Mining, 1996.
    [8]. D. A. Keim: “Technique Report of Data Mining”. Information for Site Planning, 2002.
    [9]. D. A. Keim: “Designing pixel-oriented visualization techniques: Theory and applications”. Transaction Visualization Computer Graphic, 2000.
    [10]. D. A. Keim, H. P. Kriegel, and M. Ankerst: “Recursive Pattern: A technique for visualizing very large amounts of data”. In Proc. of Visualization 95, Atlanta, GA, pages 279–286, 1995.
    [11]. M. Ankerst, D. A. Keim, and H. P. Kriegel: “Circle Segments: A Technique for Visually Exploring Large Multidimensional Data Sets”. In Proc. of Visualization 96, Hot Topic Session, San Francisco, 1996.
    [12]. D. Hand, H. Mannilla, and P. Smyth: “Principles of Data Mining”, MIT Press, Cambridge, Massachussets, 2001.
    [13]. M. O. Ward: “XmdvTool : Integrating multiple methods for visualizing multivariate data”. In Proc. of Visualization 94, Washington, DC, pages 326–336, 1994.
    [14]. H. Chernoff: “The Use of Faces to Represent Points in k-Dimensional Space Graphically”. Journal of the American Statistical Association, Vol. 68, pages 361-368, 1973.
    [15]. M. P. Consens and A. O. Mendelzon: “Hy+: A Hygraph-based Query and Visualization System”, In Proc. of the ACM SIGMOD on Management of Data, 1993.
    [16]. R. A. Becker, S. G. Eick, and G. J. Wills: “Visualizing Network Data”, IEEE Transactions on Visualizations and Graphics, 1995.
    [17]. R. J. Hendley, N. S. Drew, A. M. Wood, R. Beale: “Narcissus: Visualizing Information”. In Proc. of Int. Sysmp. On IV, Atlanta, GA, pages 90-94, 1995.
    [18]. S. Feiner and C. Beshers: “Visualizing n-Dimensional Virtual Worlds with n-Vision”, IEEE Computer Graphics, 1990.
    [19]. J. LeBlanc, M. O. Ward, and N. Wittels: “Exploring N-Dimensional Databases”, In Proc. of Visualization ‘90, 1990.
    [20]. B. Shneiderman: “Tree Visualization with Treemaps: A 2D Space-Filling Approach”, ACM Transactions on Graphics, 1992.
    [21]. A. Inselberg and B. Dimsdale: “Parallel coordinates: a tool for visualizing multi-dimensional geometry”. In Proc. of the First IEEE Conference on Visualization, 1990.
    [22]. K. Eser: “Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates”. In Proc. of the seventh ACM SIGKDD International Conference on Knowledge Discovery in Data, pages 107–116, 2001.
    [23]. T. Christian; James A. and Heidrun S.: “Axes-Based Visualization with Radial Layouts”. In Proc. of the 2004 ACM Symposium on Applied Computing, 2004.
    [24]. J. H. Holland: “Adaptation in Natural and Artificial Systems”, Ann Arbor: Univ. of Michigan Press, 1975.
    [25]. D. Michie, D.J. Spiegelhalter and C.C. Taylor: “Machine Learning, Neural and Statistical Classification”. Ellis Horwood, 1994.
    [26]. R. A. Fisher: “The use of multiple measurements in taxonomic problems”, Annual Eugenics, vol. 7, Part II, pages 179-188, 1936.
    [27]. The data has been taken from the UCI Repository of Machine Learning Databases at ftp://ftp.ics.uci.edu/pub/machine-learning-databases.
    [28]. T. Soon and M. Kwan: “StarClass: Interactive Visual Classification Using Star Coordinates” In Proc. of the 3rd SLAM International Conference on Data Mining, 2003.

    QR CODE
    :::