| 研究生: |
古智君 Chih-Chun Ku |
|---|---|
| 論文名稱: |
巨觀等向性併構岩之製作及其力學行為 Preparation and mechanical behaviors of macroscopically isotropic bimrocks |
| 指導教授: |
田永銘
Yong-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 微觀力學模式 、混成岩 、併構岩 、巨觀等向性 、體積含量 |
| 外文關鍵詞: | mélanges, macroscopically isotropic, volumetric fraction, bimrocks, micromechanics model |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在探討由基質材料中夾雜著岩塊混合而成之併構岩的力學性質及行為。本研究設計一套單軸雙向壓實模具來壓製試體,以不同的二相組成材料,製作具有不同岩塊體積含量且基質材料乾密度相同之人造『巨觀等向性』併構岩試體,探討併構岩內部二相組成材料之體積含量與勁度關係對整體力學性質與行為的影響。此外,將前人對市售的岩石三軸室之改良方法加以改進,可同時解決鎖緊三軸室頂蓋時容易將訊號線剪斷與試驗過程中水份易沿著訊號線外漏的問題。
由試驗結果顯示,併構岩試體於單軸壓縮狀態下,由於受兩材料間軟弱界面的影響,整體的力學性質係由基質材料或界面性質來控制;當試體於三軸壓縮狀態下,由於圍壓的束制作用讓岩塊材料具有提升整體強、勁度的效果,此時整體的力學性質係由基質與岩塊材料共同控制。在不同岩塊體積含量併構岩力學性質部分,試體的凝聚力隨岩塊體積含量增加而降低;內摩擦角與材料參數m值則隨岩塊體積含量增加而提高。破壞模態觀察部分,併構岩的破壞模態與岩塊體積含量及圍壓大小有關,可將破壞模態分為軸向劈裂破壞、剪力滑動破壞、主剪力滑動面之共軛破壞及多組共軛破壞四種模態。理論模式分析部分,試體於單軸壓縮狀態下,低岩塊體積含量時較符合於假設二相材料為完全接合的預測模式,在高岩塊體積含量時,因兩材料間的軟弱界面數量增加,使二相複合材料的預測模式較不適用。試體於三軸壓縮狀態下,兩材料間的界面接合性質因圍束壓力而獲得改善,以微觀力學模式來預測併構岩的力學性質屬可行的方法。
The main purpose of this research is to study the mechanical properties and behaviors of bimrocks that composed of blocks in matrix. An uniaxial bi-directional compaction mold were designed to prepare the artificial bimrocks. By using different composite materials, the mechanical properties and behaviors with distinct block proportions and stiffnesses of the block and matrix are investigated.
For the testing results, the mechanical properties of bimrock are controlled by matrix itself or the interface between block and matrix in uniaxial compression. With increasing confining pressures, the global mechanical properties and behaviors are controlled by both blocks and matrix in triaxial compression. Generally, increasing of block proportions decreased the cohesion and increased the internal friction angle and the material parameter m in Hoek-Brown criteria. Based on the experimental observation, the failure modes of the artificial bimrocks at different block proportions and confining pressures can be classified into four categories: axial splitting mode; shear fracture mode; conjugate shear mode with a main shear plane, and multiple conjugate shear planes mode. For theoretical prediction, the prediction models with assuming perfectly bonded interfaces in composite materials can fit the young’s modulus of the specimens at lower block proportions in uniaxial compression, but the prediction models can’t fit the data at higher block proportions. In triaxial compression, the micromechanics model can be used to predict the test data well.
1.王乙翕,「層狀岩盤之承載力」,碩士論文,國立中央大學土木工程學系,中壢 (2000)。
2.李德河、紀雲曜、田坤國,「泥岩之基本特性及泥岩邊坡之保護措施」,地工技術雜誌,第48期,第35-47頁 (1994)。
3.林銘郎、鄭富書、翁作新、洪如江,「台灣斷層泥之特性及斷層泥力學評估新發展」,地工技術雜誌,第79期,第91-106頁 (2000)。
4.林秉如,「粒狀複合材料堆積體與力學性質之研究」,博士論文,國立臺灣科技大學營建工程系,臺北 (2000)。
5.洪如江,「台東利吉混成岩及無根山與富里逆斷層」,地工技術,工程地質之影像,第77-89頁 (1999)。
6.陳正宏,「臺灣之火成岩」,經濟部中央地質調查所,臺北 (1990)。
7.陳志霖,「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
8.許明仁,「台灣西部卵礫石地層之坡度影響因子及其地質材料特性」,碩士論文,國立臺灣大學地質科學研究所,臺北 (2002)。
9.孫思優,「岩石三軸室應變量測改進」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
10.張徽正、賴典章、侯秉承、江崇榮、賴立沅、苟澎生、陳福將,「臺灣地區路上砂石資源調查與研究報告」,經濟部中央地質調查所,第一卷-北部地區陸上砂石資源,臺北 (1982)
11.劉哲明,「混成岩模型試體製作與體積比量測」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
12.蔡文傑,「巨觀等向性混成岩製作表面影像與力學性質」,碩士論文,國立中央大學土木工程學系,中壢 (2003)。
13.譚建國、王永明,「多相複合材料之微分模式」,中國工程學刊,第6卷,第2期,第73-82頁 (1983)。
14.譚建國,「以微分模式研究複合材料之力學性質」,行政院國家科學委員會專題研究計畫成果報告,臺南 (1980)。
15.Brady, B. H. G., and Brown, E. T., Rock mechanics for underground mining, 2nd ed., Chapman & Hall, London (1993).
16.David, C., Menendez, B., and Y. Bernabe., “The mechanical behavior of synthetic sandstone with varying brittle cement content,” Int. J. Rock Mech. Min. Sci., Vol. 35, pp. 759-770 (1998).
17.Hashin, Z., “Analysis of composite materials-a survey,” Journal of Applied Mechanics, Vol. 50, pp. 481-505 (1983).
18.ISRM, Rock characterization testing and monitoring, ed. by Brown E. T., Pergamon Press, Oxford (1981).
19.Indraratna, B. “Development and application of a synthetic material to simulate soft sedimentary rocks,” Geotechnique, Vol. 40, No. 2, pp. 189-200 (1990).
20.Johnston, I. W., and S. K. Choi., “A synthetic soft rock for laboratory model studies,” Geotechnique, Vol. 36, No. 2, pp. 251-263 (1986).
21.Kuo, M. C., Tien, Y. M., and Chu, C. A., “Study of failure process and failure modes of interstratified rock mass with an emphasis on specimen preparation and image scanning,” The 6th North American Rock Mechanics Symposium, Houston, USA, No. 584 (2004).
22.Lindquist, E. S., “The strength and deformation properties of
mélange,” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley (1994).
23.Lindquist, E. S., “The mechanical properties of a physical model mélange,” 7th International IAEG Congress, Lisbon, Portugal, pp. 819-850 (1994).
24.Lindquist, E. S., and Goodman, R. E., “Strength and deformation properties of a physical model mélange,” Proceedings of the 1st North American Rock Mechanics Symposium, Texas, USA, pp. 843-850 (1994).
25.McLaughlin, R., “A study of the differential scheme for composite materials,” Int. J. Engng. Sci., pp. 237-244 (1977).
26.Medley, E. W., “The engineering characterization of mélanges and similar block-in-matrix rocks (Bimrocks),” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley (1994).
27.Medley, E. W., “Using stereological method to estimate the volumetric proportions of blocks in mélanges and similar block in matrix rocks (bimrocks),” 7th International IAEG Congress, Lisbon, Portugal, pp. 1031-1040 (1994).
28.Medley, E. W., and Goodman, R. E., “Estimating the block volumetric proportions of mélanges and similar block-in-matrix rocks (bimrocks),” Proceedings of the 1st North American Rock Mechanics Symposium, Texas, USA, pp. 851-858 (1994).
29.Stimpson, B., “Modelling materials for engineering rock mechanics,” Int. J. Rock Mech. Min. Sci., Vol. 7, pp. 77-121 (1970).
30.Simeonov, P., and Ahmad, S., “Effect of transition zone on the elastic behavior of cement-based composites,” Cement and Concrete Research, Vol. 25, NO. 1, pp. 165-176 (1995).
31.Santarelli, F. J., and Brown, E. T., “Failure of three sedimentary rocks in triaxial and hollow cylinder compression test,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 26, pp. 401-413 (1999).
32.Tien, Y. M., and Tsao, P. F., “Preparation and mechanical properties of artificial transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp. 1001-1012 (2000).
33.Tien, Y. M., and Chu, C. A., “Rotary scanner for cylindrical specimens,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Taiwan, pp. 181-186 (2004).