跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴才淇
Tsai-chi Dai
論文名稱: 混沌理論混合粒子群搜尋法之結構離散尺寸最佳化設計
指導教授: 莊德興
Der-Shin Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 193
中文關鍵詞: 混沌理論混沌映射混沌粒子搜尋粒子群演算(搜尋)法啟發式搜尋法
外文關鍵詞: Chaos theory, Chaotic map, Chaotic swarming of particles, Particle swarm optimization, Meta-heuristic searching method
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是針對連續數計變數問題和離散設計變數問題之結構尺寸最佳化設計,提出以群體智能和混沌理論的新組合,應用在桁架與構架結構。混沌搜尋法(CSP)從許多不同的生物群體和混沌理論的靈感形成,這方法是一種多階段最佳化技巧,採用混沌理論的兩個階段,在第一階段控制粒子群搜尋法(PSO)的參數稱為(CPVPSO),第二階段是局部搜尋(CLSPSO),有些桁架結構利用CSP演算法與高階啟發式搜尋法的結果進行比較,展現出CSP的有效性,且和其他高階啟發式搜尋法類似,在本文中,藉由連續設計變數問題和離散設計變數問題,探討本文方法的優劣。比較算例之結果發現,在求解連續設計變數及離散設計變數之最佳化問題都有穩定表現,求解品質較佳。


    This article is devoted to the presentation of the optimum design with continuous and discrete variables. A new combination of swarm intelligence and chaos theory is presented for optimal design of truss structures. Here the tendency to form swarms appearing in many different organisms and chaos theory has been the source of inspiration, and the algorithm is called chaotic swarming of particles (CSP). This method is a kind of multi-phase optimization technique which employs chaos theory in two phases, in the first phase it controls the parameter values of the particle swarm optimization (CPVPSO) and the second phase is utilized for local search (CLSPSO). Some truss structures are optimized using the CSP algorithm, and the results are compared to those of the other meta-heuristic algorithms showing the effectiveness of the new method. It’s similar to other meta-heuristic algorithms. The design examples including structure design of continuous and discrete variable problems. The results show the CSP algorithm is reliable, and solution quality in the literature is comparable to oter optimal methods.

    摘要 I Abstract V 表目錄 XIV 圖目錄 XIX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 混沌理論(Chaos Theory) 4 1.2.2 粒子群演算法(Particle Swarm Optimization, PSO) 5 1.2.3 混沌粒子搜尋法(Chaotic Swarming of Particles, CSP) 5 1.3 研究方法與內容 6 第二章 混沌理論結合PSO演算法 7 2.1 粒子群演算法(PSO) 7 2.1.1 PSO基本模式 7 2.1.2 慣性權重(Inertia Weight) 8 2.1.3 PSO演算法標準程序 8 2.2 Chaos結合PSO演算法(CPVPSO) 10 2.3 混沌局部搜尋法(Chaotic Local Search Algorithm, CLSPSO) 11 2.3.1 CLSPSO演算流程說明如下: 12 2.4 結合CPVPSO與CLSPSO (稱為CSP) 17 2.4.1 CSP演算法流程說明如下: 17 2.5 結構最佳化的束制條件的處理和適應函數 20 第三章 CSP演算法 22 3.1 引言 22 3.2 CSP演算法之離散設計變數問題 22 3.2.1 慣性權重(Inertia Weight)限制 22 3.2.2 第二階段混沌局部離散搜尋程序(CLSPSO2) 23 3.2.3 離散CLSPSO2搜尋程序說明如下,於圖2-6 23 第四章 數值算例 26 4.1 分析流程 26 4.2 結構分析之連續設計變數問題 27 4.2.1 25桿空間桁架之連續設計變數 27 4.2.2 72桿空間桁架之連續設計變數 31 4.2.3 200桿平面桁架之連續設計變數 35 4.3 結構分析之離散設計變數問題 40 4.3.1 10桿平面桁架 41 4.3.2 25桿空間桁架 49 4.3.3 36桿空間桁架 58 4.3.4 72桿空間桁架 67 4.3.5 132桿空間(穹頂)桁架 75 4.3.6 160桿空間桁架 81 4.3.7 單跨單層平面構架 88 4.3.8 單跨雙層平面構架 96 4.3.9 單跨八層平面構架 105 4.3.10 雙跨五層平面構架 110 第五章 結論與建議 114 5.1 結論與建議 114 5.2 未來研究方向 115 參考文獻 117 附錄A 25桿空間桁架細部資料及設計結果 127 A.1 設計結果 127 附錄B 72桿空間桁架細部資料及設計結果 128 B.1 設計結果 128 附錄C 200桿平面桁架細部資料及設計結果 131 C.1 細部設計資料 131 C.2 設計結果 132 附錄D 10桿空間桁架細部資料及設計結果 144 D.1 細部設計資料 144 D.2 設計結果 144 附錄E 25桿空間桁架細部資料及設計結果 146 E.1 細部設計資料 146 E.2 設計結果 147 附錄F 36桿空間桁架細部資料及設計結果 148 F.1 細部設計資料 148 F.2 設計結果 149 附錄G 72桿空間桁架細部資料及設計結果 151 G.1 細部設計資料 151 G.2 設計結果 152 附錄H 132桿空間桁架細部資料及設計結果 155 H.1 細部設計資料 155 H.2 設計結果 156 附錄I 160桿空間桁架細部資料及設計結果 164 I.1 細部設計資料 164 I.2 設計結果 166 附錄J 單跨單層平面構架細部資料及設計結果 176 J.1 細部設計資料 176 J.2 設計結果 177 附錄K 單跨雙層平面構架細部資料及設計結果 178 K.1 細部設計資料 178 K.2 設計結果 178 附錄L 單跨八層平面構架細部資料及設計結果 180 L.1 細部設計資料 180 L.2 設計結果 188 附錄M 雙跨五層平面構架細部資料及設計結果 190 M.1 細部設計資料 190 M.2 設計結果 191

    參考文獻
    [1] Alatas, B., Akin, E. and Ozer, A. B., (2009) “Chaos Embedded Particle Swarm Optimization Algorithms,” Chaos Solit Fract, Vol. 40, pp. 1715–1734.

    [2] Alatas, B. and Akin, E., (2009) “Chaotically Encoded Particle Swarm Optimization Algorithm and Its Applications,” Chaos Solit Fract, Vol. 41, pp. 939–950.

    [3] Alatas, B., (2010a) “Chaotic Bee Colony Algorithms for Global Numerical Optimization,” Expert Syst Appl, Vol 37, pp. 5682–5687.

    [4] Alatas, B., (2010b) “Chaotic Harmony Search Algorithm,” Appl Math Comput, Vol. 29(4), pp. 2687–2699.

    [5] Alatas, B., (2011) “Uniform Big Bang-Chaotic Big Crunch Optimization,” Commun Nonlinear Sci Numer Simul, Vol. 16(9), pp. 3696–3703.

    [6] Cai, J., and Thierauf, G., (1993) “Discrete Optimization of Structures Using an Improved Penalty Function Method,” Engineering Optimization, Vol. 21, pp. 293-306.

    [7] Camp, C. and Bichon, J., (2004) “Design of Space Trusses Using Ant Colony Optimization,” Journal of Structural Engineering, ASCE, Vol. 130(5), pp. 741–751.
    [8] Camp, C., Pezeshk, S., and Cao, G., (1998) “Optimized Design of Two Dimensional Structures Using a Genetic Algorithm,” Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 551-559.

    [9] Chai, S., and Sun, H. C., (1996) “A Relative Difference Quotient Algorithm for Discrete Optimization,” Structural Optimization, Vol. 12, No. 1, pp. 46-56.

    [10] Coelho, L. D. S., (2008) “A Quantum Particle Swarm Optimizer with Chaotic Mutation Operator,” Chaos Solit Fract, Vol. 37(5), pp. 1409–1418.

    [11] Coelho, L. S. and Mariani, V. C., (2009) “A Novel Chaotic Particle Swarm Optimization Approach Using Henon Map and Implicit Filtering Local Search for Economic Load Dispatch,” Chaos Solit Fract, Vol. 39, pp. 510–518.

    [12] Coello, C. A., Rudnick, M., and Christiansen, A. D., (1994) “Using Genetic Algorithms for Optimal Design of Trusses,” Sixth International Conference on Tools with Artificial Intelligence, IEEE, pp.88-94.

    [13] Degertekin, S. O., (2012) “Improved Harmony Search Algorithms for Sizing Optimization of Truss Structures,” Comput Struct, Vol. 92–93, pp. 229–241.

    [14] Eberhart, R. C. and Kennedy, J., (1995) “A New Optimizer Using Particle Swarm Theory,” In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan; p. 1942–8.

    [15] Erbatur, F., Hasancebi, O., Tutuncu, I., and Kilic, H., (2000) “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp. 209-224.

    [16] Groenwold, A. A. and Stander, N., (1997) “Optimal Discrete Sizing of Truss Structure Subject to Buckling Constraints,” Structural Optimization, Vol. 14, pp. 71.

    [17] Groenwold, A. A., Stander, N. and Snyman, J. A., (1996) “A Pseudo Discrete Rounding Method for Structural Optimization,” Structural Optimization, Vol. 11, pp. 218-227.

    [18] Groenwold, A. A., Stander, N. and Snyman, J. A., (1999) “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No.6, pp. 749-766.

    [19] Harriss, J., (1975), The Tallest Tower – Eiffel and The Belle Epoque. Houghton Mifflin.

    [20] Jiang, C. and Bompard, E., (2005) “A Self-Adaptive Chaotic Particle Swarm Algorithm for Short Term Hydroelectric System Scheduling in Deregulated Environment,” J Energy Convers Manage, Vol. 46, pp. 2689–2696.

    [21] Jiang, C. and Etorre, B., (2005) “A Hybrid Method of Chaotic Particle Swarm Optimization and Linear Interior for Reactive Power Optimization,” Math Comput Simul, Vol. 68, pp. 57–65.

    [22] Jivotovski, G., (2000) “A Gradient Based Heuristic Algorithm and its Application to Discrete Optimization of Bar Structures,” Structural and Multidisciplinary Optimization, Vol. 19, pp. 237-248.

    [23] Kaveh, A. and Talatahari, S., (2009a) “Particle Swarm Optimizer, Ant Colony Strategy and Harmony Search Scheme Hybridized for Optimization of Truss Structures,” Comput Struct, Vol. 87(5–6), pp. 267–283.

    [24] Kaveh, A. and Talatahari, S., (2009b) “Size Optimization of Space Trusses Using Big Bang-Big Crunch Algorithm,” Comput Struct, Vol. 87, pp. 1129–1140.

    [25] Kaveh, A., Sheikholeslami, R., Talatahari, S. and Keshvari-Ilkhichi, M., (2014) “Chaotic Swarming of Particles: A New Method for Size Optimization of Truss Structures,” Comput Struct, Vol. 67, pp. 136-147.

    [26] Kaveh, A. and Talatahari, S., (2010) “Optimal Design of Skeletal Structures Via the Charged System Search Algorithm,” Struct Multidiscip Optim, Vol. 41(6), pp. 893–911.

    [27] Kavile, D. and Powell, G. H., (1971), “Efficient Reanalysis of Modified Structures,” Journal of the Structural Division, ASCE, Vol. 97, No. 1, pp. 377-392.

    [28] Lamberti, L., (2008) “An Efficient Simulated Annealing Algorithm for Design Optimization of Truss Structures,” Comput Struct, Vol. 86, pp. 1936–1953.

    [29] Liu, B., Wang, L., Jin, Y. H., Tang, F. and Huang, D. X., (2005) “Improved Particle Swarm Optimization Combined with Chaos,” Chaos Solit Fract, Vol. 25(5), pp. 1261–1271.

    [30] Meng, H., Zheng, P., Wu, R., Hao, X. and Xie, Z., (2004) “A Hybrid Particle Swarm Algorithm with Embedded Chaotic Search,” In: Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore; pp. 367–371.

    [31] Nanakorn, P. and Meesomklin, K., (2001) “An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimization,” Computers and Structures, Vol. 79, pp. 2527-2539.

    [32] Park, J. B., Jeong, Y. W., Kim, H. H. and Shin, J. R., (2006) “An Improved Particle Swarm Optimization for Economic Dispatch with Valve-Point Effect,” Int J Innov Energy Syst Power, Vol. 1(1), pp. 1–7.

    [33] Perez, R. E. and Behdinan, K., (2007) “Particle Swarm Approach for Structural Design Optimization,” Comput Struct, Vol. 85, pp. 1579–1588.

    [34] Ponterosso, P. and Fox, D. S. J., (1999) “Heuristically Seeded Genetic Algorithms Applied to Truss Optimization,” Engineering with Computers, Vol. 15, pp. 345-355.

    [35] Rajeev, S., and Krishnamoorthy, C. S., (1992) “Discrete Optimization of Structures Using Genetic Algorithms,” Journal of Structural Engineering, ASCE., Vol. 118, pp. 1233-1250.

    [36] Salajegheh, E. and Salajegheh, J., (2002) “Optimum Design of Structures with Discrete Variables Using Higher Order Approximation,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 1395-1419.

    [37] Salajegheh, E., and Vanderplaats, G. N., (1993) “Efficient Optimum Design of Structures with Discrete Design Variables,” Space Structures, Vol. 8, pp. 199-208.

    [38] Schutte, J. F. and Groenwold, A. A., (2003) “Sizing Design of Truss Structures Using Particle Swarms,” Struct Multidiscip Optim, Vol. 25, pp. 261–269.

    [39] Shi, Y. and Eberhart, R. C., (1998) “A Modified Particle Swarm Optimizer,” In: Proceedings of the IEEE International Conference on Computational Intelligence; pp. 69–73

    [40] Sigmund, O., (2000) “Topology Optimization: A Tool for The Tailoring of Structures and Materials,” Philos Trans R Soc A, Vol. 358, pp. 211–227.

    [41] Smith, J., Hodgins, J. and Oppenheim, I., (2002) “Witkin A. Creating Models of Truss Structures with Optimization,” ACM Trans Graph, Vol. 21(3), pp. 295–301.

    [42] Sui, Y. and Lin, Y., (1987) “The Optimization of Beam Containing Structure with Discrete Cross Section and its Computer Implementation on Plane Frame Structure,” Chinese Journal of Computational Mechanism, Vol. 4, pp. 62-69.

    [43] Sun, H. C., Chai, S. and Wang, Y. F., (1995), Discrete Optimum Design of Structures, Dalian University of Technology.

    [44] Talatahari, S., Farahmand Azar, B., Sheikholeslami, R. and Gandomi, A. H., (2012) “Imperialist Competitive Algorithm Combined with Chaos for Global Optimization,” Commun Nonlinear Sci Numer Simul, Vol. 17, pp. 1312–1319.

    [45] Talatahari, S., Kaveh, A. and Sheikholeslami, R., (2012) “Chaotic Imperialist Competitive Algorithm for Optimum Design of Truss Structures,” Struct Multidiscip Optim, Vol. 46, pp. 355–367.

    [46] Talatahari, S., Kaveh, A. and Sheikholeslami, R., (2012) “Engineering Design Optimization Using Chaotic Enhanced Charged System Search Algorithms,” Acta Mech, Vol. 223, pp. 2269–2285.

    [47] Talbi, E. G., (2009), Metaheuristics: From Design to Implementation, John Wiley & Sons., New Jersey. USA.

    [48] Togan, V. and Daloglu, A. T., (2008) “An Improved Genetic Algorithm with Initial Population Strategy and Self-Adaptive Member Grouping,” Comput Struct, Vol. 86, pp. 1204–1218.

    [49] Tong, W. H. and Liu, W. H., (2001) “An Optimization Procedure for Truss Structures with Discrete Design Variables and Dynamics Constrains,” Computers and Structures, Vol. 79, pp. 155-162.

    [50] Van Den Bergh, F. and Engelbrecht, A. P., (2006) “A Study of Particle Swarm Optimization Particle Trajectories,” Inform Sci, Vol. 175, pp. 937–971.
    [51] Wu, S. J. and Chow, P. T., (1995) “Genetic Algorithms for Nonlinear Mixed Discrete-Integer Optimization Problems Via Meta-Genetic Parameter Optimization,” Engrg. Optim., Vol. 24, pp. 137-159.

    [52] Xiang, T., Liao, X. and Wong, K., (2007) “An Improved Particle Swarm Optimization Algorithm Combined with Piecewise Linear Chaotic Map,” Appl Math Comput, Vol. 190, pp. 1637–1645.

    [53] 吳泳達 (2003),「離散拉格朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
    [54] 呂宜倫 (2013) ,「混合型人工蜂群演算法之發展與應用」,碩士論文,國立中央大學土木工程研究所,中壢。
    [55] 林俊榮 (2011.4),「以力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢。
    [56] 莊玟珊 (2007),「PSO-SA混合搜尋法與其它結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
    [57] 陳冠廷 (2011),「以整合力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢。
    [58] 張慰慈 (2003),「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
    [59] 藍志浩 (2005),「考慮動態反應束制及關連性離散變數之結構最佳化設計」,碩士論文,國立中央大學土木工程研究所,中壢。
    [60] 鐘昀展 (2011),「PSO-DE混合式搜尋法應用於結構最佳化設計之研究」,碩士論文,國立中央大學土木工程研究所,中壢。

    QR CODE
    :::