跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭義燁
Yi-Yeh Hsiao
論文名稱: 矽奈米線之幾何應力與晶體形貌效對
指導教授: 李佩雯
Pei-Wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: 矽化鎳奈米線電遷移電阻率
外文關鍵詞: Nickel Silicide, Nanowire, Electromigration, Resistivity
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出利用金屬矽化反應所生成的矽化鎳奈米線之幾何體積膨脹、晶體相位/形貌、電遷移以及電阻率與單晶矽奈米線的幾何尺寸大小之間具有強烈的相依性。固定鎳金屬矽化反應之溫度為500 oC的條件下,當單晶矽奈米線寬從500微縮至75 nm時,依序出現三個相位區間:分別是75-100 nm之相位為Ni31Si12、100-200 nm之相位為Ni2Si和200-500 nm之相位為Ni3Si2。此一奈米線具有多重相位的可能性之發現明顯迴異於塊材鎳金屬矽化反應生成之NiSi。此相位差異之主因應是源於高深寬比值的單晶矽奈米線提供了額外的側表面自由度,使反應形成之矽化鎳有更寬廣的自由空間以供體積膨脹,也就易於形成富含鎳相位之矽化鎳奈米線。
    此外本文也研究探討將複晶矽奈米線鎳金屬矽化反應後所生成之複晶矽化鎳奈米線之電遷移與電性可靠度。發現在固定限電流的電性測試下,矽化鎳奈米線會因電遷移與局部加熱而造成奈米線的斷裂。特別是矽化鎳奈米線的電遷移會局部催化鄰近氮化矽絕緣層與矽化鎳之間的固態化學反應,造成氮化矽所釋放出之矽原子又再與矽化鎳反應之,使得燒熔斷裂之局部矽化鎳奈米線由富含鎳轉變為富含矽的矽化鎳相位。
    本文所探討之幾何應力效應對於矽化鎳奈米線相位之影響以及電遷移與奈米線斷裂之分析,提供了奈米電晶體之奈米電接觸與局部電連結製作所需的材料與電性可靠度的詳細資料庫,有利於往後奈米電晶體之電極與電連結製作。


    We reported the experimental discoveries of geometrical volume expansion, crystallographic morphology/phase formation, electromigration and electrical resistivity of nickel silicide nanowires(NWs) strongly dependent on the geometrical size of the initially-formed single-crystalline Si (c-Si) and poly-crystalline Si (poly-Si) NWs before silicidation. There appear to have three different distinctive NWs size ranges of 200-500, 100-200 and 75-100nm-wide c-Si NWs for the generation of Ni3Si2, Ni2Si and Ni31Si12 NWs, respectively, that are generated after silicidation at of c-Si NWs 500 oC. The factor of multiple phases for NixSiy NWs formed by silicidation at 500 oC makes a distinct contrast to the single phase formation of NiSi for bulk Si silicidation at 500 oC. This reveals a c-Si NWs with a higher aspect ratio provides an additional sidewalls for accommodating the volume expansion, leading to N-rich phases instead of silicon-rich phases.
    We also report the electromigration and electrical reliability of nickel polycide NWs made from fully silicidation (FUSI) of poly-crystalline Si (poly-Si) NWs. Following electrical stressing that ultimately made a nickel silicide NWs rupture due to local self-heating and electromigration of the nickel silicide NWs, a unique migration of nickel polycide NWs facilitates solid state reactions with Si3N4 layer in close proximity to them. Nickel polycide interacted with Si that is released form the dissociation of Si3N4, making the phase transformation of nickel polycide NWs from nickel-rich to silicon-rich phase near the rupture locations.
    After all, we reported the geometrical strain effect on phase formation, electromigration and rupture phenomenon of nickel silicide NWs providing a detailed databases of material stability and electrical reliability for the fabrication of electrode, local metal nanocontacts and connections for Si nanoelectronic devices.

    中文摘要 i 英文摘要ii 目 錄 vi 圖表目錄viii 第一章 簡介 - 1 - 1-1 CMOS 電晶體尺寸微縮 . - 1 - 1-2 金屬矽化物 - 1 - 1-3 矽化鎳之應用 - 2 - 1-3.1 矽化鎳奈米線應用於鰭式和矽奈米線場效電晶體 - 2 - 1-3.2 矽化鎳應用於CMOS 電晶體之閘電極 - 2 - 1-3.3 矽化鎳應用於電熔絲 - 3 - 1-4 研究動機 - 4 - 第二章 矽化鎳奈米線之研製與量測方法 - 8 - 2-1 實驗流程 - 8 - 2-2 製程設計細節 - 9 - 2-2.1 矽薄膜厚度設計 - 9 - 2-2.2 矽奈米線與電極製程 - 9 - 2-2.3 鎳金屬蒸鍍與回火製程 - 10 - 2-2.4 晶體形貌均勻之矽化鎳奈米線研製的關鍵製程 - 10 - 2-3 矽化鎳奈米線之量測方法. - 11 - 第三章 矽奈米線尺寸與矽化鎳奈米線之相位的相依性 - 14 - 3-1 前言 - 14 - 3-2 矽奈米線尺寸與矽化鎳奈米線體積膨脹之關係 - 14 - 3-3 幾何應力與矽化鎳奈米線相位之關係 - 16 - 3-4 矽化鎳奈米線之電特性 - 17 - 3-5 結論 - 19 - 第四章 矽化鎳奈米線之電遷移附帶與氮化矽的固態反應現象 - 25 - 4-1 前言 - 25 - 4-2 複晶矽化鎳奈米線之雙層結構 - 25 - 4-3 電性操作後之複晶矽化鎳奈米線形貌與相位演進和電遷移機制 - 26 - 4-4 單晶矽研製之矽化鎳奈米線的熱熔斷現象 - 28 - 4-5 結論 - 29 - 第五章 總結與未來展望 - 35 - 參考文獻 - 37 -

    [1] K. Matsumoto, “Electrical characterization of Ni Silicide formed by Ni reaction with scaled Si nanowires”, Master thesis, (2013).

    [2] H. Iwai, et al., “NiSi salicide technology for scaled CMOS”, Microelectron. Eng., vol 60, p.157, (2002).

    [3] C. Lavoie, et al., “Towards implementation of a nickel silicide process for CMOS technologies“, Microelectronic Engineering, vol.70, p.144, (2003).

    [4] A. Kaneko, etc., “High-Performance FinFET with Dopant-Segregated schottky Source/Drain”, IEDM Tech. Dig., p.893, (2006).

    [5] S. Sato, et al., “Gate Semi-Around Si nanowire FET fabricated by conventional CMOS process with very high drivability”, Proc. of 40th ESSDERC, p.361, (2010).

    [6] 莊達人編著,「VLSI 製造技術」,高立圖書有限公司,(1997)。

    [7] J. Kedzierski, “Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation”, IEDM Tech. Dig., p.247, (2002).

    [8] M. Qin, et al., “Investigation of polycrystalline nickel silicide films as a gate material”, J. Electrochem. Soc., vol.148, No.5, p.271, (2001).

    [9] S. M. Rossnagel and T. S. Kuan, ”Alteration of Cu conductivity in the size effect regime” J. Vac. Sci. Technol. B, vol 22, p.240, (2004).

    [10] Steinhögl W., et al., ”Size-dependent resistivity of metallic wires in the mesoscopic range”, Phys. ReV. B, vol 66, 075414, (2002).

    [11] Nicoleta Lupu, “Nanowires Science and Technology”, InTech, (2010).

    [12] M. Tinani, et al., “In situ real-time studies of nickel silicide phase formation”, J. Vac. Sci. Technol. B, vol.19, p.376, (2001).

    [13] K. Ogata, et al., “N-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires”, Nanotechnology, vol.22, 365305, (2011).

    [14] S. Habicht, et al., “Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts”, Nanotechnology, vol.21, 105701, (2010).

    [15] Q. Wang, Q. Luo, and C. Z. Gu, “Nickel silicide nanowires formed in pre-patterned SiO2 trenches and their electrical transport properties”, Nanotechnology, vol.18, 195304, (2007).

    [16] Y. Lin, et al., “Growth of nickel silicides in Si and Si/SiOx core/shell nanowires,“ Nano Letters, vol.10, p4721, (2010).

    [17] Yue Wu, et al., “Single-crystal metallic nanowires and metal/semiconductor nanowires heterostructures,” Nature, vol.430, p.61, (2004).

    [18] W. M. Weber, et al., “Silicon-Nanowire transistors with intruded Nickel-Silicide contacts”, Nano Lett., vol.6, p.2660, (2006).

    [19] N. S. Dellas, et al., ”Orientation dependence of nickel silicide formation in contacts to silicon nanowires”, Appl. Phys. Lett., vol.5, 094309, (2009).

    [20] L. W. Cheng, et al., “Effects of stress on the formation and growth of nickel silicides in Ni thin films on (0 0 1)Si”, Sci. Eng. A, vol.409, p.217, (2005).

    [21] D. Mangelinck, and K. Hoummada, ” Effect of stress on the transformation of Ni2Si into NiSi”, Appl. Phys. Lett, vol.92, 254101, (2008).

    [22] M.-A. Nicolet, and S. S. Lau ”VLSI Electronics Microstructure Science”, N. G. Einspruch and G. B. Larrabee (Academic Press, New York, 1983), Vol.6, Chap.6, p.329

    [23] Z. Zhang, et al., ”Electrically robust ultralong nanowires of NiSi, Ni2Si, and Ni31Si12”, Appl. Phys. Lett., vol.88, 043104, (2006).

    [24] M. E. Schlesinger, ” Thermodynamics of solid Transition-Metal silicides”, Chem Rev, vol.90, p.607, (1990).

    [25] C. Y. Chang, and S. M. Sze, “ULSI Technology”, McGraw Hill, (1996).

    [26] Boon Ang, et al., “NiSi polysilicon fuse reliability in 65-nm logic CMOS technology” IEEE TDMR, vol.7, No.2, (2007).

    [27] Chunyan E. Tian, et al., “Reliability investigation of NiPtSi electrical fuse with different programming mechanisms”, IEEE TDMR, vol.8, No.3, (2008).

    [28] Deok-kee Kim, et al., “An investigation of electrical current induced phase transformations in the NiPtSi polysilicon system”, Appl. Phys. Lett., vol.103, 073708, (2008).

    [29] J. A. Kittl, et al., “Work Function of Ni silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12,and Ni3Si fully silicided gates”, IEEE EDL, vol.27, No. 1, (2006).

    [30] T. Shimoo, and K. Okamura, “Interaction of Si3N4 with Ni–Cr alloy under N2 or Ar atmosphere”, J. Mater. Sci., vol.33, p.5169, (1998).

    [31] JCPDS card No.481339

    [32] J. A. Kittl, et al., “CMOS Integration of Dual Work Function Phase-Controlled Ni Fully Silicided Gates (NMOS : NiSi, PMOS:Ni2Si, and Ni31Si12) on HfSiON”, IEEE EDL, Vol. 27, No. 12, (2006)

    [33] M. A. Pawlak, et al., “Modulation of the Work function of Ni Fully Silicided Gates by Doping: Dielectric and Silicide Phase Effects”, IEEE EDL, Vol. 27, No. 2, (2006)

    QR CODE
    :::