| 研究生: |
鄭至人 Chih-Ren Cheng |
|---|---|
| 論文名稱: |
ZCm 的理想環生成元個數之上限 An Upper Bound for the Number of Generators of an Ideal in ZCm |
| 指導教授: |
夏良忠
Liang-Chung Hsia 呂明光 Ming-Guang Leu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 整數群環 、廣義歐幾里德 、半局部環 、穩定秩 |
| 外文關鍵詞: | integral group ring, generalized Euclidean, semilocal ring, stable rank |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1966年,P. M. Cohn 受到佈於歐幾里德環的可逆矩陣可以用基本方陣列簡化為單位矩陣這個性質的啟發,介紹了廣義歐幾里德環的概念。在1984年,Dennis、Magurn 與 Vaserstrin 證明有限循環群Cm的整數群環ZCm是廣義歐幾里德環。已知廣義歐幾里德環是quasi-歐幾里德環且quasi-歐幾里德環是廣義歐幾里德環。本文中,對於非明顯交換群G,我們建構一個ZG的有限生成非主理想環來證明ZG既不是歐幾里德環也不是quasi-歐幾里德環,並且給出ZCm的理想環生成元個數之上界。特別是當m為一個質數的次方時,我們給出更嚴謹的上界。在最後一章裡,藉由Wedderburn-Artin 定理,我們會用一個比Bass的證明更容易理解的方式來證明:半局部環的穩定秩為一,所以它是廣義歐幾里德環。
In 1966, P. M. Cohn introduced the concept of a generalized Euclidean ring, inspired by the property that any invertible matrix over a Euclidean ring can be row-reduced to the dentity matrix by elementary matrices. In 1984, Dennis, Magurn and Vaserstein proved that the integral group ring ZCm of finite cyclic group Cm is generalized Euclidean.
It is well known that a Euclidean ring is quasi-Euclidean and a quasi-Euclidean ring is generalized Euclidean. In this thesis, we construct a finitely generated nonprincipal ideal of ZG for nontrivial abelian group G to show that ZG is neither Euclidean nor quasi-Euclidean. Moreover, we give an upper bound for the number of generators of an ideal in ZCm. The case m being a power of a prime is treated more seriously. In the final chapter, following the Wedderburn-Artin Theorem, we give a more accessible proof than Bass' to show that a semilocal ring has stable rank one, hence it is a generalized Euclidean ring.
[1] H. Bass, K-theory and stable algebra, Inst. Hautes Etudes Sci. Publ. Math. 22 (1964), 5-60.
[2] H. Bass, Algebraic K-Theory, Benjamin, New York, 1968.
[3] W.-Y. Chang, On a paper of P. M. Cohn, Master thesis, National Central University, Chung-li, Taiwan, 2015.
[4] W.-Y. Chang, C.-R. Cheng, and M.-G. Leu, A remark on the ring of algebraic integers in Q(√-d), Israel Journal of Mathematics 216 (2016), 605-616.
[5] C.-A. Chen, About k-stage Euclidean rings, Ph.D. thesis, National Central University, Chung-li, Taiwan, 2011.
[6] C.-A. Chen and M.-G. Leu, The 2-stage Euclidean algorithm and the restricted Nagata's pairwise algorithm, J. Algebra 348 (2011), 1-13.
[7] P. M. Cohn, On the structure of the GL2 of a ring, Inst. Hautes Etudes Sci. Publ. Math. 30 (1966), 5-53.
[8] G. E. Cooke, A weakening of the Euclidean property for integral domains and applications to algebraic number theory I, J. Reine Angew. Math. 282 (1976), 133-156.
[9] K. Dennis, B. Magurn, and L. Vaserstein, Generalized Euclidean group rings, J. Reine Angew. Math. 351 (1984), 113-128.
[10] G. Dresden, Resultants of cyclotomic polynomials, Rocky Mountain J. Math. 42:5 (2012), 1461-1469.
[11] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd ed., John Wiley and Sons, New York, 2003.
[12] A. J. Hahn and O. T. O'Meara, The Classical Groups and K-Theory, Springer-Verlag, New York, 1989.
[13] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
[14] T. Y. Lam, Bass's work in ring theory and projective modules, in: T. Y. Lam, A. R. Magid (Eds.), Algebra, K-theory, Groups,
and Education, on the Occasion of Hyman Bass's 65th Birthday, Contemp. Math. 243 (1999), 83-124.
[15] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 2001.
[16] A. Leutbecher, Euklidischer Algorithmus und die Gruppe GL2, Math. Ann. 231 (1978), 269-285.
[17] B. A. Magurn, An Algebraic Introduction to K-Theory, Cambridge University Press, Cambridge, 2002.
[18] B. A. Magurn, On a note from Oliver concerning generalized Euclidean group rings, Comm. Algebra 42 (2014), 3350-3365.
[19] J. M. Masley and H. L. Montgomery, Cyclotomic elds with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256.
[20] H. Matsumura, Commutative Ring Theory, translated from the Japanese by M. Reid, 2nd ed., Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1989.
[21] C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
[22] J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin Heidelberg, 1999.
[23] D. S. Passman The Algebraic Structure of Group Rings, John Wiley and Sons, New York, 1977.
[24] S. Perlis and G. L. Walker, Abelian group algebras of nite order,
Trans. Amer. Math. Soc. 68 (1950), 420-426.
[25] P. Ribenboim, Rings and Modules, John Wiley and Sons, New York, 1969.
[26] P. Samuel, About Euclidean rings, Journal of Algebra 19 (1971), 282-301.
[27] A. A. Suslin, On the structure of the special linear group over polynomial rings, Mathematics of the USSR-Izvestiya, 11:2 (1977), 221-238.
[28] A. R. Tambunan, On generalized Euclidean rings, Master thesis, National Central University, Chung-li, Taiwan, 2017.
[29] L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funktsional. Anal. i Prilozhen. 5:2 (1971), 17-27.
[30] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer-Verlag, New York, 1997.