跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳居穆
Chu-Mu Wu
論文名稱: 利用轉換狀態圖及模型建立進行人體運動姿勢辨識
Model based human motion recognition using transition diagram
指導教授: 范國清
Kuo-Chin Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 40
中文關鍵詞: 視訊監控目標物偵測姿勢辨識
外文關鍵詞: Video Surveillance, motion recognition, object detection
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電腦視覺的應用,一直都是相當熱門,也有許多相關的應用,近十年來,研究者對於辨識分析人體的動作或行為更是感興趣,目前可以應用的相關領域大致有虛擬實境:例如製作動畫角色的模擬;智慧型監控系統:可以節省人力的支出;高級人機介面:可以用手勢操作系統等。
    而目前人體運動姿勢的辨識方法大致上可以分為兩類,第一種為模型建立方法,會將人體影像套上一個定義好的幾何模型或是輪廓模型,其缺點是容易受背景雜訊影響,需要有較良好的前景物影像來進行處理。第二種方式則是不需套入定義的人體模型,主要是利用輪廓比對,或是在輸入影像後,擷取特徵點來進行訓練和辨識,其缺點是特徵向量若太大,會使運算不易處理,也由於沒有事先定義好的運動模式,會不容易描述目前所進行的運動或行為。
    基於上述的理由,本研究希望能夠結合兩種不同方式的優點,首先建立一個定義好的人體模型,接著在這個模型上,進行特徵的抽取,由於在定義的模型上擷取特徵,可以有效縮減特徵向量的複雜度,另外一方面,由於是利用擷取後的特徵向量來進行訓練和辨識,因此對於前景物影像,也可以有較穩定的處理效果;而人體運動大致上是平順進行轉換,例如直立走路,接著蹲下,然後再趴下或跌倒,而不會突然由趴下的動作突然變成直立行走,因此設計一個運動姿勢的轉換狀態圖,來描述實驗中運動姿勢的轉換,希望能夠提高辨識的準確度,實驗結果證明了本研究所提出之方法對於人體運動姿勢的辨識,具有良好的準確度。


    During the past decade, the technique of computer vision has been widely applied in several fields. Typical applications include virtual reality, intelligent surveillance system, human-interface, etc. There are two categories of human motion recognition approaches including model based and non-model based. Model based approach usually fits the given image or blob to a shape model, which represents joint parts and human body parts. One has to segment images into different parts, such as head, torso, arms, and legs. The drawback of this approach is that it needs more stable foreground segmentation. As to non-model based approach, it extracts features from the image, and the correspondence between consecutive frames is obtained based on estimation or prediction of features relating to shape, texture, and colors. The drawback of this kind of approach is that it is difficult to define the activity because of the lacking of pre-defined model.
    In this thesis, the two approaches are combined. First, we use a pre-defied model, and features are extracted from different regions in this model. In this way, the complexity of features can be reduced due to the utilization of segmented images and the system can still perform well even if the foreground image is not stable. Human motions, like walking and crawling, usually transfer smoothly in each state. Hence, a transition diagram is designed to describe the transition between different motions. Experiments were conducted and results reveal the validity of our proposed approach.

    Abstract i 摘要 ii 誌謝 iii 目錄 iv 附圖目錄 vi 表格目錄 vii 第一章 緒 論 1 1.1 研究動機 1 1.2 相關研究 2 1.3 系統簡介 4 1.4 論文架構 5 第二章 前景物偵測 6 2.1 建立背景 6 2.2 前處理 8 2.2.1 型態學運算 9 2.2.2 連通元件分析 10 2.2.3 陰影去除 11 2.3 前景物追蹤 13 第三章 人體運動姿勢辨識 17 3.1 人體模型 18 3.2 特徵抽取 19 3.3 特徵資料分類 20 3.4 轉換狀態圖 23 第四章 實驗結果 27 4.1 實驗環境 27 4.2 實驗結果 27 4.2.1 背景建立 27 4.2.2 前處理 29 4.3 辨識結果 30 4.3.1 運動姿勢辨識 30 4.3.2 辨識率 32 第五章 結論與未來工作 37 5.1 結論 37 5.2 未來工作 38 參考文獻 39

    [1] I. Haritaoglu, D. Harwood and L.S. Davis, “W4: Real-time
    surveillance of people and their activities”, IEEE Transactions on
    Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp.
    809-830, 2000.
    [2] L.S. Davis, D. Harwood, and I. Haritoaglu., “Ghost: A human body
    part labeling system using silhouettes.”, in Proc. ARPA Image
    Understanding Workshop, pp. 229–235, 1998.
    [3] A. Ali and J.K. Aggarwal, “Segmentation and recognition of
    continuous human activity”, in IEEE Workshop on Detection and
    Recognition of Events in Video, pp. 28--, 2001.
    [4] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, “Probabilistic
    posture classification for human-behavior analysis”, IEEE
    Transactions on Systems, Man, and Cybernetics, Part A 35(1): 42-54,
    2005.
    [5] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time
    sequential images using hidden Markov model.”, in Proc. of IEEE
    Conference on Computer Vision and Pattern Recognition, pp.
    379--385, 1992.
    [6] J. Freer, B. Beggs, F. Chevriet and A. Goryashko, "Automatic
    recognition of suspicious activity for camera based security systems.",
    in IEE Proceedings of European Convention on Security and
    Detection, no. 4018, pp. 54-58, 1995.
    40
    [7] C. Wren, A. Azarbayejani, T. Darrell and A. Pentland, “Pfinder:
    Real-time tracking of the human body”, IEEE Transactions on Pattern
    Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 780-785, 1997.
    [8] D. Gutchess, M. Trajkonic, E. Cohen-Solal, D. Lyons , and A.K.Jain,
    “A background model initialization algorithm for video surveillance.”,
    Proc. of the 8th IEEE Int''l Conf. on Computer Vision., pp. 733-740,
    2001.
    [9] 蘇木春, 張孝德, “機器學習:類神經網路、模糊系統以及基因演
    算法則”, 全華科技圖書股份有限公司, 2003
    [10] D. Gavrila, “The visual analysis of human movement: A survey.”,
    Computer Vision and Image Understanding, 73(1):82-98, 1999.
    [11] A. Cavallaro, O. Steiger and T. Ebrahimi, “Tracking video objects in
    cluttered background”, IEEE Transactions on Circuits and Systems for
    Video Technology, VOL. 15, NO. 4, 2005.
    [12] A. Senior, “Tracking with probabilistic appearance models”, in ECCV
    Workshop on Performance Evaluation of Tracking and Surveillance
    Systems, pp. 48–55, 2002.

    QR CODE
    :::