跳到主要內容

簡易檢索 / 詳目顯示

研究生: 姚維翰
Wei-Hann Yao
論文名稱: 無鐵心線性永磁同步馬達驅動系統之設計與控制
Design and Control of an Ironless Linear Permanent-Magnet Synchronous Motor Drive System
指導教授: 董必正
Pi-Cheng Tung
周復初
Fu-Chu Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 96
中文關鍵詞: 時間延遲補償器不確定項消除強健不確定項消除控制器線性馬達重力補償震盪補償器低取樣頻率
外文關鍵詞: robust uncertainty controller, linear motor, uncertainty cancellation, delay compensation, gravity compensation, hunting compensator, low sampling rate
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出幾種適用於高精度無鐵心線性永磁同步馬達驅動系統的控制演算法。首先提出一種強健不確定項消除控制器和時間延遲補償器的控制方法用於未知系統參數的無鐵心線性永磁同步馬達系統。此控制方法應用於無鐵心線性永磁同步馬達系統的電流和速度迴路控制上,來減少由d-q軸耦合項、系統的不確定項、摩擦力和重力所造成的干擾。此控制方法好處之一是它相當簡單,並且讓系統於穩態時的輸出等於輸入,這代表系統的DC增益可以設計成1。因此本控制方法不需再結合其他控制演算法。另外的好處是此控制方法不需要知道確切的系統參數。其次本論文提出一種震盪消除方法用於無鐵心線性永磁同步馬達系統。由於系統的非線性因素會使得無鐵心線性永磁同步馬達系統在某些PI控制器參數可能產生震盪。因此本震盪消除控制方法可以限制PI控制器參數在一定的穩定範圍內,以避免震盪現象產生。此震盪消除方法也可應用於
    低取樣頻率的控制系統。在一個低取樣頻率的閉迴路控制系統裡,某些PI控制器參數會造成系統不穩定而產生震盪。而本震盪消除控制方法不但簡單還能確保閉迴路控制系統在低固定取樣頻率下的穩定性。


    This dissertation presents some control scheme for an ironless linear permanent-magnet synchronous motor (ILPMSM) system of high-precision control. First, a robust uncertainty controller with a system delay compensation for an ILPMSM system with unknown system parameters is proposed. The proposed control scheme is applied for ILPMSM system current and velocity control to reduce disturbance due to the d-q axis coupling effect, modeling uncertainty, friction and gravity force. One of the advantages of the proposed controller is relatively simple, and allows system steady-state output to be equal to input, which means that DC gain of the controlled system is designed as one. As a result, the proposed controller does not need to be combined with other control algorithms. Another advantage of the proposed controller is that it does not need to known system parameters precisely. Next, we propose a hunting suppression scheme for an ILPMSM driver system. Since the ILPMSM system with certain PI controller parameters may result in hunting because of nonlinearities. Therefore, the proposed compensator can limit the parameter values of the PI controller to an upper bound value corresponding to the upper limit of the stability range of the system. This hunting suppression scheme also can be applied for a control system with low sampling rate. The closed loop control system may become unstable and cause hunting if a low sampling rate is set with certain controller parameters. The proposed hunting suppression scheme is simple and ensures that the closed loop system remains stable at a fixed low sampling rate.

    摘要 I ABSTRACT II 誌謝 IV Contents i Figure Captions ii 1 Introduction P.1 1.1 Motivation P.1 1.2 Literature survey P.3 1.3 Organization of this dissertation P.8 2 Ironless Linear Permanent-Magnet Synchronous Motor Structure and Dynamic Modeling P.10 2.1 Outline of this chapter P.10 2.2 ILPMSM Structure and Dynamic Modeling P.10 3 Robust Uncertainty Controller with System Delay Compensation for an ILPMSM System with Unknown System Parameters P.17 3.1 Outline of this chapter P.17 3.2 System Configuration of the Established DSP-Based ILPMSM Drive P.19 3.3 Robust Uncertainty Control Scheme P.22 3.4 Robust Uncertainty Control Scheme for ILPMSM System Current Control P.26 3.4.1 Simulation Results P.31 3.4.2 Experimental Results P.34 3.5 Robust Uncertainty Control Scheme for ILPMSM System Velocity Control P.41 3.5.1 Simulation Results P.44 3.5.2 Experimental Results P.46 4 Suppression of hunting in an ILPMSM driver system using hunting compensator P.53 4.1 Outline of this chapter P.53 4.2 Hunting Suppression Scheme P.55 4.3 Suppression of hunting in an ILPMSM driver system using hunting compensator P.58 4.3.1 Simulation Results P.66 4.3.2 Experimental Results P.71 4.4 Hunting Suppression for a Control System with Low Sampling Rate P.78 4.4.1 Simulation Results P.81 5 Conclusions P.85 References P.88

    [1] I. Boldea and S. A. Nasar, Linear Electric Motors: Theory, Design, and Practical Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987, pp. 91–132.
    [2] J. F. Gieras and Z. J. Piech, Linear Synchronous Motors: Transportation and Automation Systems. Boca Raton, FL: CRC, 2000, pp. 123–148.
    [3] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electronic Machine and Drive Systems, 2nd ed. New York: IEEE Press, 2002, pp. 191–242.
    [4] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drivers. Oxford, U.K.: Oxford Univ. Press, 1996, pp. 290–298.
    [5] Kollmergen Linear Motors Aim to Cut Cost of Semiconductors and Electronics Manufacture, Kollmorgen, Radford, VA, U.S.A., 1997.
    [6] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991
    [7] H. A. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, 2002.
    [8] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design. 3rd ed., Prentice Hall, 1995.
    [9] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, Robust current control and commutation tuning for an IPMSM drive,” in Proc. 18th IEEE APEC, Feb. 2003, vol. 2, pp. 1045–1051.
    [10] K. Ohishi, K. Ohnishi and K. Miyachi, “Adaptive DC servo drive control taking force disturbance suppression into account,” IEEE Trans. Ind. Appl., Vol. 24, No. 1, Part 1, Jan.-Feb. 1988, pp.171–176.
    [11] W. T. Su and C. M. Liaw, “Robust balanced control of LPMSM servo drive with mass identification and large command change,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 153, no. 3, pp. 439–450, May 2006.
    [12] W. T. Su and C. M. Liaw, “Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer,” IEEE Trans. Power Electron., Vol. 21, No. 2, Mar. 2006, pp.505–517.
    [13] R. H. Horng, H. L. Chou and A. C. Lee, “Rejection of Limit Cycles Induced From Disturbance Observers in Motion Control,” IEEE Trans. Ind. Electron., Vol. 53, No. 6, Dec. 2006, pp.1770-1780.
    [14] K. B. Lee and F. Blaabjerg, “Robust and Stable Disturbance Observer of Servo System for Low-Speed Operation”, IEEE Trans. Ind. Appl., Vol. 43, No. 3, May./Jun. 2007, pp. 627-635.
    [15] S. H. Choi, J. S. Ko, I. D. Kim, J. S. Park, and S. C. Hong, “Precise position control using a PMSM with a disturbance observer containing a system parameter compensator,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 152, no. 6, pp. 1573–1577, Nov. 2005.
    [16] Y. A. R. I. Mohamed, “Design and Implementation of a Robust Current-Control Scheme for a PMSM Vector Drive With a Simple Adaptive Disturbance Observer,” IEEE Trans. Ind. Electron., Vol. 54, No. 4, Aug. 2007, pp.1981-1988.
    [17] T. M. O’Sullivan, C. M. Bingham and N. Schofield, “Observer-Based Tuning of Two-Inertia Servo-Drive Systems With Integrated SAW Torque Transducers,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, Apr. 2007, pp.1080-1091.
    [18] B. K. Kim, W. K. Chung and K. Ohba, “Design and Performance Tuning of Sliding-Mode Controller for High-Speed and High-Accuracy Positioning Systems in Disturbance Observer Framework,” IEEE Trans. Ind. Electron., Vol. 56, No. 10, Oct. 2009, pp.3798-3809.
    [19] Z. Jamaludin, H. V. Brussel and J. Swevers, “Friction Compensation of an XY Feed Table Using Friction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer,” IEEE Trans. Ind. Electron., Vol. 56, No. 10, Oct. 2009, pp.3848-3853.
    [20] K. Yoshida, and H. Matsumoto, Propulsion and guidance simulation of a high-temperature superconducting Bulk ropeless linear elevator, IEEE Trans. on Magnetics, vol. 40, no. 2, pp. 615-618, 2004.
    [21] S.H. Lim, and R. Krishnan, Ropeless elevator with linear switched reluctance motor drive actuation systems, IEEE Trans. Ind. Electron., vol.54, no. 4, pp. 2209-2217, 2007.
    [22] N.S. Lobo, S.H. Lim, and R. Krishnan, Comparison of linear switched reluctance machines for vertical propulsion application: analysis, design, and experimental correlation, IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1134-1142,. 2008.
    [23] S.H. Lim, R. Krishnan, and N.S. Lobo, Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives, IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 534-542, 2008.
    [24] W.F. Xie, Sliding-mode-observer-based adaptive control for servo actuator with friction, IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1517-1527, 2007.
    [25] Y.S. Kung, Design and implementation of a high-performance PMLSM drives using DSP chip, IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1341-1351, 2008.
    [26] F.J. Lin, L.T. Teng, C.Y. Chen, and Y.C. Hung, FPGA-based adaptive backstepping control system using RBFN for linear induction motor drive, IET Electr. Power Appl., vol. 2, no. 6, pp. 325-340, 2008.
    [27] F.J. Lin, L.T Teng, and Y.C. Hung, Modified Elman neural network controller with improved particle swarm optimization for linear synchronous motor drive, IET Electr. Power Appl., vol. 2, no. 3, pp. 201-214, 2008.
    [28] F.J. Lin, C.Y. Chen, L.T. Teng, and H. Chu, Recurrent Functional-Link-Based Fuzzy Neural Network Controller With Improved Particle Swarm Optimization for a Linear Synchronous Motor Drive, IEEE Trans. on Magnetics, vol. 45, no. 8, pp. 3151-3165, 2009.
    [29] F. Cupertino, D. Naso, E. Mininno, and B. Turchiano, Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors, IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1688-1696, 2009.
    [30] Y.S. Huang, and C.C. Sung, Function-based controller for linear motor control systems, IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 1096-1105, 2010.
    [31] F.J. Lin, L.T. Teng, C.Y. Chen, and C.K. Chang, Robust RBFN control for linearinduction motor drive using FPGA, IEEE Trans. Power Electron., vol. 23, no. 4, pp.2170–2180, 2008.
    [32] F.J. Lin, J.C. Hwang, P.H. Chou, and Y.C. Hung, FPGA-based intelligent-complementary sliding-mode control for PMLSM servo-drive system, IEEE Trans. Power Electron., vol. 25, no. 10, pp.2573–2587, 2010.
    [33] A.V. Sant, K.R. Rajagopal, PM Synchronous Motor Speed Control Using Hybrid Fuzzy-PI With Novel Switching Functions, IEEE Trans. on Magnetics, vol. 45, no. 10, , pp.4672–4675, 2009.
    [34] C.C. Cheah, and H.C. Liaw, Inverse Jacobian regulator with gravity compensation: stability and experiment, IEEE Trans. on Robotics, vol. 21, no. 4, pp. 741-747, 2005.
    [35] A. Zavala-Río, and V. Santibáñez, Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Trans. Control Syst. Technol., vol. 14, no. 5, pp. 958-965, 2006.
    [36] J.D. Rubio, and L.A. Soriano, An asymptotic stable proportional derivative control with sliding mode gravity compensation and with a high gain observer for robotic arms, IJICIC, vol. 6, no. 10, pp. 4513-4525, 2010.
    [37] M. Yue, W. Sun, and P. Hu, Sliding mode robust control for two-wheeled mobile robot with lower center of gravity, IJICIC, vol. 7, no. 2, pp. 637-646, 2011.
    [38] M.H.Tsai, and M.C.Shih, A Study of the Pneumatic Counterweight of Machine Tools Conventional and Active Pressure Control Method, JSME International Journal, vol. 49, no. 3, pp. 890-896, 2006.
    [39] D. Karnopp, “Computer simulation of stick-slip friction in mechanical dynamic systems,” J. Dynamic Systems, Measurement and Control, Transactions of the ASME, vol.107, no.1, pp.100–103, Mar. 1985.
    [40] B. Friedland and Y.-J. Park, “On adaptive friction compensation,” IEEE Trans. Autom. Control, vol.37, no.10, pp.1609–1612, Oct. 1992.
    [41] B. Armstrong-H´elouvry, P. Dupont, and C. Canudas de Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, vol.30, no.7, pp.1083–1138, Jul. 1994.
    [42] P. R. Dahl, “A solid friction model,” The Aerospace Corporation, El Segundo, CA, Technical Report TOR-158(3107-18), 1968.
    [43] D. A. Haessig, Jr. and B. Friedland, “On the modeling and simulation of friction,” J. Dynamic Systems, Measurement and Control, Transactions of the ASME, vol.113, no.3, pp.354–362, Sep. 1991.
    [44] C. Canudas de Wit, H. Olsson, K.J. A˙ stro¨m, and P. Lischinsky, “A newmodel for control of systems with friction,” IEEE Trans. Autom. Control, vol.40, no.3, pp.419–425, Mar. 1995.
    [45] F. J. Lin, Y. C. Hung, and S. Y. Chen, “FPGA-Based Computed Force Control System Using Elman Neural Network for Linear Ultrasonic Motor,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp.1238-1253, Apr. 2009.
    [46] B. K. Kim, W. K. Chung and K. Ohba, “Adaptive Robust Precision Motion Control of Systems With Unknown Input Dead_Zones A Case Study With Comparative Experiments,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp.2454-2464, Jun. 2011.
    [47] T. Jahns, “Motion control with Permanent-magnet ac machines,” Proc. IEEE, vol. 82, no. 8, pp.1241–1252, Aug. 1994.
    [48] P. C. Tung and S. C. Chen, “Experiment and analytical studies of the sinusoidal dither signal in a DC motor system,” Dynamics and Control, vol. 3, no. 1, pp.992-997, Jan. 1993.
    [49] J. Ishikawa, Y. Yanagita, T. Hattori and M. Hashimoto, Head positioning control for low sampling rate systems based on two degree-of-freedom control, IEEE Trans. on Magnetics, vol.32, no.3, pp.1787-1792, 1996.
    [50] H. Fujimoto, Y. Hori and A. Kawamura, Perfect tracking control based on multirate feedforward control with generalized sampling periods, IEEE Trans. Ind. Electron., vol48, no.5, pp.636-644, 2001.
    [51] Z. Cao and G. F. Ledwich, Adaptive repetitive control to track variable periodic signals with fixed sampling rate, IIEEE/ASME Transactions on Mechatronics, vol.7, no.3, pp.378-384, 2002.
    [52] M. Mizuochi, T. Tsuji and K. Ohnishi, Multirate Sampling Method for Acceleration Control System, IEEE Trans. Ind. Electron., vol.54, no.3, pp.1462-1471, 2007.
    [53] T. Sato, Design of a generalized minimum variance control in sampled-data control systems, IJICIC, vol.5, no.10B, pp.3295-3302, 2009.
    [54] J. S. Yim, S. K. Sul, B. H. Bae, N. R. Patel and S. Hiti, Modified Current Control Schemes for High-Performance Permanent-Magnet AC Drives With Low Sampling to Operating Frequency Ratio, IEEE Trans. Ind. Appl., vol.45, no.2, pp.763-771, 2009.
    [55] Y. L. Wang and G. H. Yang, Network-based H(infinity) control of systems with time-varying sampling period, IJICIC, vol.6, no.4, pp.1833-1842, 2010.
    [56] R.A. Borges1, R.C.L.F. Oliveira1, C.T. Abdallah and P.L.D. Peres, Robust H∞ networked control for systems with uncertain sampling rates, IET Control Theory Appl., vol.4, no.1, pp.50-60, 2010.
    [57] I. Mizumoto, Y. Fujimoto, N. Watanabe and Z. Iwai, Fast rate adaptive output feedback control of multi-rate sampled system with an adaptive output estimator, IJICIC, vol.7, no.7B, pp.4377-4394, 2011.
    [58] J.M. Olm, G.A. Ramos and R. Costa-Castello’, Stability analysis of digital repetitive control systems under time-varying sampling period, IET Control Theory Appl., vol.5, no.1, pp.29-37, 2011.

    QR CODE
    :::