跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張銘珊
Ming-shan Chang
論文名稱: 金屬氫化物顆粒床熱傳導係數量測設計之模擬分析
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 儲氫合金熱傳導係數
外文關鍵詞: metal hydride, thermal conductivity
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文建立數學模型並藉由套裝軟體COMSOL Multphysics 4.3模擬金屬氫化物顆粒床等效熱傳導係數量測實驗之過程,透過實驗之模擬驗證等效熱傳導係數理論模型之合理性並探討其受壓力、溫度、含氫濃度之影響,發現固體熱傳導係數決定等效熱傳導係數之基本大小,而受尺寸效應影響之氣體熱傳導係數則決定其隨壓力變化之幅度。並且,等效熱傳導係數與壓力、溫度、含氫濃度為正相關,而與孔隙率為負相關,其中壓力對等效熱傳導係數之影響最為明顯。
    此外,模擬實驗過程以探討反應裝置於實驗過程中之熱傳特性,得知儲氫合金於吸放氫過程受到上下端溫度差異裝置的影響,合金密度、溫度以及等效熱傳導係數皆沿軸向變化,而合金平衡壓則因溫度及合金密度由上而下遞增之影響於空間中大致呈均勻分布。
    金屬氫化物等效熱傳導係數量測裝置之絕熱效果對實驗之準確性而言是相當重要的因素,故利用量測裝置之半徑與高度尺寸參數進行絕熱效果之探討,發現裝置以扁平之圓盤設計時其絕熱效果較佳,而當罐體外型固定時,絕熱層外徑與待測材料半徑比值為1.65時有最佳徑向絕熱效果。


    This study presents the effective thermal conductivity of metal hydride granular beds, consisting of the alloy powders and the void pores between the powders, using the theoretical model. Effects of hydrogen pressure, hydrogen content and bed temperature on the effective thermal conductivity are analyzed. Results show the heat transfer between the adjacent solid powders constitutes the fundamental part of the effective thermal conductivity. Heat transfer by the gas conduction, which is strongly affected by the size effect, determines the effective thermal conductivity change rate with pressure. The raises in pressure, temperature and hydrogen content result in a higher effective thermal conductivity of metal hydride bed. In contrast, the raise in porosity results in a lower effective thermal conductivity.
    This study also presents numerical simulation for the processes of measuring the effective thermal conductivity using an axial heat conduction device. Results from the simulation show the hydrogen content, temperature and effective thermal conductivity mainly change in the axial direction. The hydrogen equilibrium pressure however is uniform due to the combined effects of the hydrogen content and temperature.
    The insulation efficiency in the radial direction of the effective thermal conductivity measurement device is important to ensure the measurement accuracy. Results of parameter analysis show the device is better to have a flat disc shape than a long cylinder shape for the radial insulation. In addition, for fixing the outer diameter of the device, there is the best insulation effect if the radius ratio of the insulation layer to the test stack radius is 1.65 regardless of the material properties, which maximizes the axial heat rate to the relatively minimized radial heat rate.

    目錄 摘要 I 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章緒論 1 1.1 前言 1 1.2 儲氫技術 2 1.3 儲氫合金 3 1.3.1儲氫合金發展歷史 3 1.3.2儲氫合金介紹 4 1.3.3儲氫合金吸放氫原理 4 1.3.4 PCI曲線 6 1.4研究動機 7 1.5文獻回顧 7 1.5.1等效熱傳導係數理論模型發展 7 1.5.2尺寸效應 9 1.6 研究目的 10 第二章 物理系統與數學模型 14 2.1 物理系統 14 2.2模擬幾何外型 16 2.3氫氣流道數學模型 17 2.3.1連續方程式 17 2.3.2動量方程式 17 2.3.3能量方程式 18 2.4合金區數學模型 19 2.4.1連續方程式 19 2.4.2動量方程式 20 2.4.3能量方程式 21 2.5參考材料區與絕熱層數學模型 21 2.6 等效熱傳導係數方程式 23 2.7 合金吸放氫動力學 25 2.7.1 合金吸放氫速率 25 2.7.2 合金吸放氫平衡壓力 26 2.8初始條件與邊界條件 29 2.8.1初始條件 29 2.8.2邊界條件 31 2.9數值方法 34 2.9.1 COMSOL Multiphasics 34 2.9.2網格配置 34 2.9.3誤差與精確度 35 第三章 儲氫合金於等效熱傳導係數量測過程之熱傳特性 43 3.1合金顆粒床之等效熱傳導係數特性 43 3.1.1有效熱傳導導係數模型驗證 43 3.1.2 合金顆粒床之熱傳機制探討 45 3.1.3壓力與含氫濃度對等效熱傳導係數之影響 46 3.1.4溫度對等效熱傳導係數之影響 47 3.1.5孔隙率對等效熱傳導係數之影響 49 3.1.6孔隙尺寸對等效熱傳導係數之影響 49 3.1.7調整係數對等效熱傳導係數之影響 50 3.2 吸氫反應過程之熱傳特性 50 3.2.1合金吸氫初期 51 3.2.2合金吸氫中期 51 3.2.3合金吸氫後期 52 3.3 放氫反應過程之熱流特性 52 3.3.1合金放氫反應初期 53 3.3.2合金放氫反應中期 53 3.3.3合金放氫反應後期 54 3.4改變壓力對等效熱傳導係數量測實驗於吸放氫過程的影響 54 3.4.1供氫壓對等效熱傳導係數量測實驗於吸氫過程的影響 54 3.4.2出口壓對等效熱傳導係數量測實驗於放氫過程的影響 56 第四章 等效熱傳導係數量測裝置尺寸最佳化 74 4.1半徑之影響 75 4.1.1測試堆半徑固定,絕熱層厚度設計對實驗之影響 76 4.1.2罐體外徑固定,測試堆半徑設計對實驗之影響 76 4.1.3絕熱層厚度固定,測試堆半徑設計對實驗之影響 78 4.2高度之影響 79 4.2.1合金區高度固定,參考材料高度設計對實驗之影響 79 4.2.2參考材料區高度固定,合金區高度設計對實驗之影響 80 4.2.3罐體高度固定,合金區高度設計對實驗之影響 80 4.3 綜合討論 81 第五章 結論與未來展望 96 5.1結論 96 5.2 未來展望 97 參考文獻 98

    Alazmi B. and Vafai K., "Analysis of variants within the porous media transport models," Journal of Heat Transfer, (2000):303-326.
    Botzung M., Chaudourne S., Gillia O., Perret C., Latroche M., Percheron-Guegan A., and Marty P., "Simulation and experimental validation of a hydrogen storage tank with metal hydrides," International Journal of Hydrogen Energy33.1 (2008): 98-104.
    Chung C. A., and Ho C. J., "Thermal–fluid behavior of the hydriding and dehydriding processes in a metal hydride hydrogen storage canister," International Journal of Hydrogen Energy 34.10 (2009): 4351-4364.
    Dhaou H., Askri F., Ben Salah M., Jemni A., Ben Nasrallah S. and Lamloumi J., "Measurement and modelling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds." International Journal of Hydrogen Energy 32 (2007): 576-587.
    Incropera F. P., Lavine A. S., Bergman T. L. and DeWitt D. P., Fundamentals of heat transfer, John Wiley & Sons Incorporated, (2012)
    Jemni, A., and Ben Nasrallah S., "Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor," International Journal of Hydrogen Energy 20.1 (1995a): 43-52.
    Jemni, A., and Ben Nasrallah S., "Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor." International Journal of Hydrogen Energy 20.1 (1995b): 881-891.
    Jemni A., Ben Nasrallah S., and Lamloumi J., "Experimental and theoretical study of ametal–hydrogen reactor," International Journal of Hydrogen Energy 24.7 (1999): 631-644.
    Kumar E. A., Maiya P. M., and Murthy S. S., "Measurement and Analysis of Effective Thermal Conductivity of MmNi4.5Al0.5 Hydride Bed," Industrial & Engineering Chemistry Research 50.23 (2011): 12990-12999.
    Kunii D., and Smith J. M., "Heat transfer characteristics of porous rocks," American Institute Chemical Engineers Journal 6.1 (1960): 71-78.
    MacDonald B. D., and Rowe A. M., "Experimental and numerical analysis of dynamic metal hydride hydrogen storage systems," Journal of Power Sources 174.1 (2007): 282-293.
    MacDonald B. D., and Rowe A. M., "Impacts of external heat transfer enhancements on metal hydride storage tanks." International Journal of Hydrogen Energy 31.12 (2006): 1721-1731.
    Martin M., Gommel C., Borkhart C., and Fromm E., "Absorption and desorption kinetics of hydrogen storage alloys," Journal of Alloys and Compounds 238.1 (1996): 193-201.
    Masamune S., and Smith J. M., "Thermal conductivity of beds of spherical particles," Industrial & Engineering Chemistry Fundamentals 2.2 (1963): 136-143.
    Reilly Jr, J. J., and Wiswall Jr, R. H., "Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4," Inorganic Chemistry 7.11 (1968): 2254-2256.
    Sandrock G., "A panoramic overview of hydrogen storage alloys from a gas reaction point of view," Journal of Alloys and Compounds 293 (1999): 877-888.
    Schlapbach L., and Züttel A., "Hydrogen-storage materials for mobile applications," Nature 414.6861 (2001): 353-358.
    William S., "Thermal conductivity of packed beds." American Institute Chemical Engineers Journal Journal 6.1 (1960): 63-67.
    Standard, A. S. T. M., "E1225-09, Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded Comparative Longitudinal Heat Flow Technique ‘ASTM International," West Conshohocken, PA (2009).
    Suda S., Kobayashi N., Yoshida K., Ishido Y. and Ono S., "Experimental measurements of thermal conductivity," Journal of the Less Common Metals 74.1 (1980): 127-136.
    Suda S., Kobayashi N., Yoshida K., "Reaction kinetics of metal hydrides and their mixtures," Journal of the Less Common Metals 73.1 (1980): 119-126.
    Suissa E., Jacob I., and Hadari Z., "Experimental measurements and general conclusions on the effective thermal conductivity of powdered metal hydrides," Journal of the Less Common Metals 104.2 (1984): 287-295.
    Sun D. W., and Deng S. J., "A theoretical model predicting the effective thermal conductivity in powdered metal hydride beds," International Journal of Hydrogen Energy 15.5 (1990): 331-336.
    Sun D. W., and Deng S. J., "Theoretical descriptions and experimental measurements on the effective thermal conductivity in metal hydride powder beds," Journal of the Less Common Metals 160.2 (1990): 387-395.
    Troost L., and Hautefeuille P., "The Combination of H with Alkali Metals," CR Hebd. Séances Acad. Sci 78 (1874): 807-811.
    Van Vucht J. H. N., Kuijpers F. A. and Bruning H. C. A. M., "Reversible room-temperature absorption of large quantities of hydrogen by intermetalic compounds," Philips Res. Rep. 25 (1970): 133-40.
    Wang C. Y., Tien H. C., Chyou S. D., Huang N. N., and Wang S. H., "Hydrogen absorption/desorption in a metal hydride reactor accounting for varied effective thermal conductivity," Journal of Marine Science and Technology 19.2 (2011): 168-175.
    White F. M., Fluid mechanics, WCB 1999.
    White F. M., Viscous fluid flow, McGraw-Hill Higher Education (2006):46
    Xing C., Jensen C., Ban H., and Phillips J., "Uncertainty analysis on the design of thermal conductivity measurement by a guarded cut-bar technique," Measurement Science and Technology 22.7 (2011): 075702.
    Yagi S. and Kunii D., "Studies on effective thermal conductivities in packed beds." AIChE Journal 3.3 (1957): 373-381.
    Züttel A., "Materials for hydrogen storage," Materials today 6.9 (2003): 24-33.
    胡子龍.,儲氫材料,曉園出版社,(2006):16-19,60-63.
    郭博堯,京都議定書的爭議與妥協,財團法人國家政策研究基金會,2001.
    陳元任,熱管作為熱傳增強元件之金屬氫化物儲氫容器吸氫熱流模擬研究,2011
    陳維新,能源概論,高立圖書,第八章 2-10,2011
    陳鈺培,熱傳增強對儲氫容器金屬氫化物吸放氫的影響,2012
    趙蔚倫,金屬氫化物顆粒床熱傳導係數量測與實驗分析,2013

    QR CODE
    :::