| 研究生: |
蘇韋寧 Wei-ning Su |
|---|---|
| 論文名稱: |
以脈衝直流磁控濺鍍法製作含氫非晶矽薄膜於太陽電池之應用 Fabrication of Hydrogenated Amorphous Silicon Thin Films Using DC-pulse Magnetron Sputtering |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 薄膜 、濺鍍 、薄膜太陽電池 、非晶矽 |
| 外文關鍵詞: | amorphous silicon, thin film, solar cell |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於能源危機的問題,薄膜式太陽電池的研究引起很多專家學者的注意。目前最普遍為民生所使用的太陽電池是由電漿輔助化學氣相沉積法(plasma-enhance chemical vapor deposition, PECVD)所製作出的非晶矽薄膜太陽電池,但是PECVD在製程上需要昂貴的設備費及使用有毒、易燃氣體矽烷(silane, SiH4),因此本研究主旨在探討使用脈衝直流磁控濺鍍製作含氫非晶矽薄膜應用於薄膜式太陽電池的研究。利用調變不同製程溫度、脈衝頻率與氫氣通量,製作出含氫非晶矽薄膜(a-Si:H),並量測其特性。將實驗所製作出的薄膜量測XRD、FTIR、導電率,得到薄膜的結構、矽氫鍵結、導電率的結果,作分析與比較。
於實驗中發現,以脈衝儀直流磁控濺鍍系統所製作出的非晶矽薄膜,隨著氫氣通量的增加薄膜的R* (Microstructure factor)會增加,且在溫度由250℃升至350℃對於Si-H2鍵結比例無明顯影響,在氫氣通量8sccm以上,薄膜結構會趨向結晶。電性部分隨著氫氣量的增加,有照光與無照光的導電率都會上升,但是無照光的上升幅度比較大,造成photosensitivity下降,而非晶矽薄膜部分,photosensitivity有大多數皆超過103或104以上,可見此薄膜對於光照之後會有光起電效應作用,可應用於薄膜太陽電池的非晶純矽層(intrinsic layer, i-layer)。
In recent years, the researches of Thin Film Solar Cells attracted much attention for the reason of the energy crisis. To fabricate amorphous silicon thin film solar cells using plasma-enhance chemical vapor deposition (PECVD) is the most popular method. The disadvantages of PECVD are the high facility cost and using the toxic processing gases such as silane (SiH4). In this research, the hydrogenated amorphous silicon (a-Si:H) thin films for the application of thin thing film solar cell were fabricated using DC pulse magnetron sputtering with the different process temperatures, the DC pulse frequencies or the hydrogen gas flows and measured by using XRD,FTIR, conductivity measurement.
The results show that the microstructure factors(R*) of a-Si:H were increased when the hydrogen gas flow increased. And the concentration of Si-H2 bonds is not obviously change at high temperature (TS=350℃) or temperature (TS=250℃). According to the analysis of XRD, the a-Si:H films tend to crystallize when the hydrogen gas flow increased. Besides, the analyses of the electrical property show the dark and photo conductivity were increased and photosensitivities decreased when the hydrogen gas flow increased at all temperatures and pulse frequencies. Finally, the photosensitivities of the a-Si:H thin films are all higher than 103 or 104 which means that the a-Si:H thin films fabricated using DC pulse magnetron sputtering can be applied to the intrinsic layer of thin film solar cell.
[1] M. A. Green, K. Emery, D. L. King, Y. Hishikawa, and W. Warta, "Solar Cell Efficiency Tables (Version 28)," Prog. Photovoltaics Res. Appl. 14, 455-461 (2006).
[2] L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, "Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell," Solar Energy Mater. Solar Cells 87, 349-355 (2005).
[3] P. Ray, P. Chaudhuri, and P. Chatterjee, "Hydrogenated amorphous silicon films with low defect density prepared by argon dilution: application to solar cells," Thin Solid Films 403, 275-279 (2002).
[4] K. Kurobe, T. Fuyuki, and H. Matsunami, "Characterization of crystalline silicon grown by plasma-enhanced CVD for thin-film solar cells," Solar Energy Mater. Solar Cells 66, 1-9 (2001).
[5] U. Kroll, J. Meier, A. Shah, S. Mikhailov, and J. Weber, "Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution," J. Appl. Phys. 80, 4971 (1996).
[6] D.R. Myers, A. Andreas, T. Stoffel, I. Reda, S. Wilcox, P. Gotseff, and B. Kay,"Radiometric Calibrations,Measurements, and Standards Development at NREL", NREL/CP-560-30964(2001)
[7] A. M. Nardes, A. M. De Andrade, F. J. Fonseca, E. A. T. Dirani, E. A. T. Dirani, R. Muccillo, and E. N. S. Muccillo, "Low-temperature PECVD deposition of highly conductive microcrystalline silicon thin films," Journal of Materials Science-Materials in Electronics 14, 407-411 (2003).
[8] R. Biswas and B. Pan, "Microscopic nature of Staebler-Wronski defect formation in amorphous silicon," Appl. Phys. Lett. 72, 371 (1998).
[9] 楊素華、蔡泰成,"太陽能發展,"科學發展月刊,390期,54(2005)。
[10] 莊嘉琛, "太陽能工程-太陽電池篇," 全華科技圖書股份有限公司, 中華民國九十年十月初版三刷。
[11] D. Staebler and C. Wronski, "Reversible conductivity changes in discharge-produced amorphous Si," Appl. Phys. Lett. 31, 292 (1977).
[12] A.J. Lewis,G. A.N Conneil, W. Paul and J.R. Pawlik, Proc.Int. Conf. Tetrally Bouded Amorphous Semicond., American Institute of Physics, New York 27 (1974)
[13] T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, "Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon," Phys. Rev. Lett. 89, 015502 (2002).
[14] P. Stradins, "Light-induced degradation in a-Si: H and its relation to defect creation," Solar Energy Mater. Solar Cells 78, 349-367 (2003).
[15] S. Shimizu, M. Kondo, and A. Matsuda, "A highly stabilized hydrogenated amorphous silicon film having very low hydrogen concentration and a improved Si bond network", Journal of applied physics 97, 33522(2005)
[16] D. Rickerby and A. Matthews, "Advanced Surface Coatings: a Handbook of Surface Engineering," Blackie & Son Limited, (1991).
[17] 高正雄編著,"電漿化學,"復漢出版社,2-4(1999)。
[18] 楊錦章譯,"基礎濺鍍電漿,"電子發展月刊,第68期,13 (1983)。
[19] 陳陵援、吳慧眼,"儀器分析,"三民書局,99(2002)。
[20] J. M. Seo, M. C. Jeong, and J. M. Myoung, "Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering," J. Cryst. Growth (2006).
[21] W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, "Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane," Journal of Physics D Applied Physics 38, 838-842 (2005).
[22] 許樹恩、吳泰伯,"X光繞射原理與材料結構分析,"民全書局(1993)
[23] H. Makihara, A. Tabata, Y. Suzuoki, T. Mizutani, "Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepared by rf magnetron sputtering, " 59, 785-791 (2000)
[24] C. Koc, M. Ito, M. Schubert, "Low-temperature deposition of amorphous silicon solar cells, " Solar Energy Materials & Solar Cells 68 227-236 (2001)
[25] S. Ray, " Transition from amorphous to microcrystal Si:H :effects of substrate temperature and hydrogen dilution", Journal of Non-crystalline Solids 299-302, 761-766 (2002)
[26] S. Klein, F. Finger, R. Carius, H. Wagner, and M. Stutzmann, "Intrinsic amorphous and microcrystalline silicon by hot-wire-deposition for thin film solar cell applications," Thin Solid Films 395, 305-309 (2001).