| 研究生: |
陳仁傑 Jen-chieh Chen |
|---|---|
| 論文名稱: |
希爾伯特黃變換(HHT)於變轉速之齒輪故障診斷之應用 Application of Hilbert-Huang Transform to Gear Fault Diagnosis under Variable Speed |
| 指導教授: |
吳天堯
Tian-yau Wu 黃衍任 Yean-ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 故障診斷 、齒輪 、訊號處理 、希爾伯特黃轉換 |
| 外文關鍵詞: | fault diagnosis, Hilbert Huang transform, signal processing, gear |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的是研究旋轉機械齒輪系統在變轉速的情況下,齒輪發生磨損、斷齒、不平衡等故障時,使用希爾伯特-黃轉換方法分析其非線性、非穩態訊號,以提取其故障特徵。首先將訊號透過集成經驗模態分解法分解,並進行後處理過程,得到數個的固有模態函數,使用正常化希爾伯特變換方法、一般化跨零點方法、Direct Quadrature方法,三種不同的方法計算每一個固有模態函數的瞬時頻率,將瞬時頻率計算結果利用馬達轉速進行無因次單位頻率正規化,使固有模態函數去除轉速的因子後,選取具有意義的固有模態函數,將其得到的無因次單位瞬時頻率和瞬時振幅作時間-頻率-能量分布圖,並對時間積分作頻率-能量圖,即為邊際頻譜圖,從四種實驗類型之頻譜圖中有效的找出對應之故障特徵,以辨別出四種故障類型。
The main purpose of this paper is to study the fault features of gear system, such as gear wearing, teeth broken, gear unbalance, under variable rotation speed. The Hilbert-Huang Transform (HHT) method is utilized to analyze the nonlinear and non-stationary vibration signals. The signals are decomposed into a number of Intrinsic Mode Function (IMF) through the Ensemble Empirical Mode Decomposition (EEMD) and the Post-Processing of EEMD. The three different methods of calculating the instantaneous frequencies, Normalized Hilbert Transform (NHT) method, Generalized Zero-Crossing (GZC) method, and Direct Quadrature (DQ) method, are employed to determine the instantaneous frequencies of IMFs. The dimensionless frequency-time-energy distributions of IMFs is then obtained through dimensionless frequency normalization, so that the factor of shaft rotation speed can be extracted. The characteristic dimensionless frequencies of different fault types can be identified in the marginal spectrum of the information-contained IMFs.
[1] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., 1998, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of Royal Society London. A, No. 454, pp. 903-995.
[2] Huang, N. E. and Wu, Z., 2004, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proceedings of Royal Society London. A, No. 460, pp. 1597-1611.
[3] Han, L., 2010, “Gear fault detection and diagnosis based on Hilbert-Huang Transform,” IEEE 3rd International Congress on Image and Signal Processing, pp. 3323-3326.
[4] 于德介、程軍聖、楊宇,2006,機械故障診斷的Hilbert-Huang變換方法,科學出版社。
[5] Huang, N. E. and Wu, Z., 2005, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Center for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No. 173.
[6] Huang, N. E. and Wu, Z., 2009, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1–41.
[7] 張智傑,2005,“齒輪故障診斷之模糊類神經網路,”中原大學機械工程學系碩士論文。
[8] Ai, S. and Li, H., 2008, “Gear fault detection based on ensemble empirical mode decomposition and Hilbert-Huang transform,” IEEE Fifth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 173-177.
[9] Li, H., Zheng, H. and Tang, L., 2009, “Gear fault diagnosis based on order tracking and Hilbert-Huang transform,” IEEE Sixth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 468-472.
[10] Zhang, Y., 2006, “Order bispectrum based gearbox fault diagnosis during speed-up process,” IEEE Proceedings of the 6th World Congress on Intelligent Control and Automation, pp. 5526-5529.
[11] Fyfe, K. R. and Munck, E. D. S., 1997, “Analysis of computed order tracking,” Mechanical Systems and Signal Processing, Vol. 11, No. 2, pp. 187-205.
[12] Bossley, K. M. and Mckendrick, R. J., 1999, “Hybrid computed order tracking,” Mechanical Systems and Signal Processing, Vol. 13, No. 4, pp. 627-641.
[13] Huang, N. E., Wu, Z., Long, S. R., Arnold, K. C., Chen, X. and Blank, K., 2009, “On instantaneous frequency,” Advances in Adaptive Data Analysis, Vol. 1, No. 2, pp. 177-229.