跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林承緯
Cheng-wei Lin
論文名稱: 模糊系統觀測控制器設計─齊次多項式尤拉法
Observer and Controller Design of Fuzzy Systems via Homogeneous Euler's Method
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 87
中文關鍵詞: 非二次穩定平方和參數相依齊次多項式Takagi-Sugeno模糊系 統尤拉齊次多項式定理泰勒級數
外文關鍵詞: Non-quadratic stability, Sum of squares, Homogeneous polynomially parameter-dependent (HPPD) functions, T-S fuzzy systems, Euler's Theorem for Homogeneous Functions, Taylor-Series
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究連續模糊系統的非二次穩定(non-quadratic stability)
    條件,以泰勒級數建模得出模糊系統,且以非二次的李亞普諾
    夫函數(Lyapunov function) 及對時間的變化率作為穩定的條件,對
    於決定擴展狀態的高階李亞普諾夫函數,其形式為
    V(x,e)=[x e][adj(Q(x)) 0;0 U(e)][x;e]
    而使用尤拉齊次多項式可以排除V(x,e)對時間t 微分所產生Q(x) 之
    微分項,再以平方和方法(Sum-of-Squares) 來檢驗模糊系統的穩定條
    件,並設計出其觀測器及控制器。
    由於觀測器與控制器的相依性,分離設計並不容易,本論文將以
    限制條件分段解析,並找出有條件下的分離設計方法。


    It's not easy to separate the synthesis of observer and controller
    due to their dependability. The main contribution in this thesis is
    non-quadratic stability of continuous fuzzy systems, which is modeled
    by Taylor series method. And we can solve the inequations derived
    from non-quadratic Lyapunov function and its time gradient. The
    form of extension from the state dependent Riccati inequalities to
    non-quadratic Lyapunov function is
    V(x,e)=[x e][adj(Q(x)) 0;0 U(e)][x;e].
    To overcome the di erential terms of Q(x) derived from time gradient
    of V(x,e), we introduce Euler's homogeneous polynomial theorem
    to derive the SOS condition and solve for the observer and controller
    with sum-of-squares approach.

    中文摘要.......................................................................................... v 英文摘要.......................................................................................... vi 謝誌.................................................................................................vii 目錄.................................................................................................viii 圖目錄.............................................................................................. x 一、背景介紹..................................................................... 1 1.1 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文結構. . . . . . . . . . . . . . . . . . . . . . . 3 1.4 符號標記. . . . . . . . . . . . . . . . . . . . . . . 4 1.5 預備定理. . . . . . . . . . . . . . . . . . . . . . . 5 二、系統架構與檢測條件................................................... 7 2.1 系統架構. . . . . . . . . . . . . . . . . . . . . . . 7 2.2 連續系統控制器與觀測器設計. . . . . . . . . . . . 8 2.3 尤拉齊次多項式定理. . . . . . . . . . . . . . . . . 9 2.4 模型簡化及分類. . . . . . . . . . . . . . . . . . . . 12 2.5 類型一系統之穩定度條件. . . . . . . . . . . . . . . 13 2.6 類型二系統之穩定度條件. . . . . . . . . . . . . . . 17 2.7 類型三系統之穩定度條件. . . . . . . . . . . . . . . 21 三、模糊建模方法及平方和檢測法....................................26 3.1 泰勒級數模糊. . . . . . . . . . . . . . . . . . . . . 26 3.2 平方和檢驗法. . . . . . . . . . . . . . . . . . . . . 28 3.3 平方和檢驗法之類型一系統穩定度條件. . . . . . . 32 3.4 平方和檢驗法之類型二系統穩定度條件. . . . . . . 33 3.5 平方和檢驗法之類型三系統穩定度條件. . . . . . . 34 3.6 求解技巧. . . . . . . . . . . . . . . . . . . . . . . 35 四、電腦模擬.....................................................................37 4.1 例題一. . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 例題二. . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 例題三. . . . . . . . . . . . . . . . . . . . . . . . . 60 五、結論與未來方向..........................................................68 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . 69

    [1] Kazuo Tanaka, Hiroshi Ohtake, Toshiaki Seo, Motoyasu Tanaka,
    and Hua O Wang. Polynomial fuzzy observer designs: A sumof-
    squares approach. Systems, Man, and Cybernetics, Part B:
    Cybernetics, IEEE Transactions on, 42(5):1330{1342, 2012.
    [2] T. Takagi and M. Sugeno. Fuzzy identi cation of systems and its
    applications to modelling and control. IEEE Trans. Syst., Man,
    Cybern., 15(1):116{132, January 1985.
    [3] M. Sugeno and G.T. Kang. Structure identi cation of fuzzy
    model. Fuzzy Set and Systems, 28:15{33, 1988.
    [4] K. Tanaka and M. Sugeno. Stability analysis and design of fuzzy
    control systems. Fuzzy Set and Systems, 45:135{156, 1992.
    [5] W.M. Haddad and D.S. Bernstein. Explicit construction of
    quadratic Lyapunov functions for the small gain, positive, circle
    and Popov theorems and their application to robust stability.
    Part II: discrete-time theory. Int'l J. of Robust and Nonlinear
    Control, 4:249{265, 1994.
    [6] H.O. Wang, K. Tanaka, and M.F. Grin. An approach to fuzzy
    control of nonlinear systems: stability and design issues. IEEE
    Trans. Fuzzy Systems, 4(1):14{23, February 1996.
    [7] J.R.Wan and J.C. Lo. LMI relaxations for nonlinear fuzzy control
    systems via homogeneous polynomials. In The 2008 IEEE World
    Congress on Computational Intelligence, FUZZ2008, pages 134{
    140, Hong Kong, CN, June 2008.
    [8] V.F. Montagner, R.C.L.F Oliveira, and P.L.D. Peres. Necessary
    and sucient LMI conditions to compute quadratically stabilizing state feedback controller for Takagi-sugeno systems. In Proc. of
    the 2007 American Control Conference, pages 4059{4064, July
    2007.
    [9] T. M. Guerra and L. Vermeiren. LMI-based relaxed nonquadratic
    stabilization conditions for nonlinear systems in the Takagi-
    Sugeno's form. Automatica, 40:823{829, 2004.
    [10] B.C. Ding, H. Sun, and P Yang. Further studies on LMI-based
    relaxed stabilization conditions for nonlinear systems in Takagisugeno's
    form. Automatica, 43:503{508, 2006.
    [11] X. Chang and G. Yang. FA descriptor representation approach
    to observer-based H∞ control synthesis for discrete-time fuzzy
    systems. Fuzzy Set and Systems, 185(1):38{51, 2010.
    [12] B. Ding. Stabilization of Takagi-Sugeno model via nonparallel
    distributed compensation law. IEEE Trans. Fuzzy Systems,
    18(1):188{194, February 2010.
    [13] A. Jaadari J. Pan, S. Fei and T. M. Guerra. Nonquadratic stabilization
    of continuous T-S fuzzy models: LMI solution for local
    approach. IEEE Trans. Fuzzy Systems, 20(3):594{602, 2012.
    [14] J. B. Park D. H. Lee and Y. H. Joo. Approaches to extended nonquadratic
    stability and stabilization conditions for discrete-time
    Takagi-Sugeno fuzzy systems. Automatica, 47(3):534{538, 2011.
    [15] M. Johansson, A. Rantzer, and K.-E. Arzen. Piecewise quadratic
    stability of fuzzy systems. IEEE Trans. Fuzzy Systems, 7(6):713{
    722, December 1999.
    [16] G. Feng. Controller synthesis of fuzzy dynamic systems based on
    piecewise Lyapunov functions. IEEE Trans. Circuits and Syst. I:
    Fundamental Theory and Applications, 11(5):605{612, 2003.
    [17] D. Sun G. Feng, C. Chen and Y. Zhu. H1 controller synthesis
    of fuzzy dynamic systems based on piecewise Lyapunov functions
    and bilinear matrix inequalities. IEEE Trans. Circuits and Syst.
    I: Fundamental Theory and Applications, 13(1):94{103, 2005.
    [18] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang. A sum of
    squares approach to modeling and control of nonlinear dynamical
    systems with polynomial fuzzy systems. IEEE Trans. Fuzzy
    Systems, 17(4):911{922, August 2009.
    [19] S. Prajna, A. Papachristodoulou, and et al. New developments on
    sum of squares optimization and SOSTOOLS. In Proc. the 2004
    American Control Conference, pages 5606{5611, 2004.
    [20] H. Ichihara. Observer design for polynomial systems using convex
    optimization. In Proc. of the 46th IEEE CDC, pages 5347{5352,
    New Orleans, LA, December 2007.
    [21] J. Xu, K.Y. Lum, and et al. A SOS-based approach to residual
    generators for discrete-time polynomial nonlinear systems. In
    Proc. of the 46th IEEE CDC, pages 372{377, New Orleans, LA,
    December 2007.
    [22] J. Xie, L. Xie, and Y. Wang. Synthesis of discrete-time nonlinear
    systems: A SOS approach. In Proc. of the 2007 American Control
    Conference, pages 4829{4834, New York, NY, July 2007.
    [23] K. Tanaka, H. Yoshida, and et al. A sum of squares approach
    to stability analysis of polynomial fuzzy systems. In Proc. of the
    2007 American Control Conference, pages 4071{4076, New York,
    NY, July 2007.
    [24] K. Tanaka, H. Yoshida, and et al. Stabilization of polynomial
    fuzzy systems via a sum of squares approach. In Proc. of the
    22nd Int'l Symposium on Intelligent Control Part of IEEE Multi-
    conference on Systems and Control, pages 160{165, Singapore,
    October 2007.
    [25] H. Ichihara and E. Nobuyama. A computational approach to
    state feedback synthesis for nonlinear systems based on matrix
    sum of squares relaxations. In Proc. 17th Int'l Symposium on
    Mathematical Theory of Network and Systems, pages 932{937,
    Kyoto, Japan, 2006.
    [26] C.W.J. Hol and C.W. Scherer. Sum of squares relaxations for
    polynomial semide nite programming. In Proc.of MTNS, pages
    1{10, 2004.
    [27] S. Prajna, A. Papachristodoulou, and P. Parrilo. Introducing
    SOSTOOLS: a general purpose sum of squares programming
    solver. In Proc of IEEE CDC, pages 741{746, Montreal, Ca, July
    2002.
    [28] C. Ebenbauer, J. Renz, and F. Allgower. Polynomial Feedback
    and Observer Design using Nonquadratic Lyapunov Functions.
    [29] A. Sala and C. Arino. Polynomial fuzzy models for nonlinear
    control: A Taylor series approach. IEEE Trans. Fuzzy Systems,
    17(6):1284{1295, December 2009.
    [30] S. Prajna, A. Papachristodoulou, and F. Wu. Nonlinear control
    synthesis by sum of squares optimization: A Lyapunov-based Approach.
    In Proc. 5th Asian Control Conference, pages 157{165,
    July 2004.
    [31] P.A. Parrilo. Structured Semide nite Programs and Semialgebraic
    Geometry Methods in Robustness and Optimization. PhD thesis,
    Caltech, Pasadena, CA., May 2000.

    QR CODE
    :::