跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊繼仁
Chi-ren Yang
論文名稱: 利用四極柱質譜儀與光放射光譜儀進行磊晶矽薄膜於ECR-CVD之電漿診斷研究
指導教授: 利定東
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: ECR-CVD電漿診斷磊晶矽
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用電子迴旋共振化學氣相沉積系統(ECRCVD)製備磊晶矽薄膜,並使用光放射光譜儀(OES)監測電漿物種變化,四極柱質譜儀(QMS)監測電漿中自由基之濃度。藉由改變製程功率、製程壓力、氫稀釋比以及磁場共振位置,並佐以橢圓儀、拉曼光譜儀來分析薄膜之厚度和結晶性,最後將電漿量測結果以及薄膜特性相互比對,了解電漿內部之反應機制,以建立電漿診斷平台。
    實驗結果發現製程功率的提升可以使沉積速率增加,但是高功率環境下薄膜之結晶程度會降低。製程壓力的提升會使薄膜沉積速率以及結晶率有上升的趨勢。若增加氫稀釋比,製程中氫氣的蝕刻機制會使薄膜上的結晶率增加,但同時會降低薄膜之沉積速率。最後,藉由調整ECRCVD主磁場電流,可以改變電漿共振區在腔體中的位置,愈大的主磁場電流可使共振區越靠近基板,因此會提升薄膜之沉積速率,但由於離子轟擊的現象會降低薄膜之結晶率。
    本研究整合OES和QMS來建立電漿診斷平台,利用其來解析ECRCVD 中電漿之組成以及各粒子間之反應機制,並藉由改變各項製程參數來了解對磊晶矽薄膜沉積速率以及結晶性之影響。


    In this study, OES (Optical emission spectrometer) was used to diagnose the variation of plasma species, QMS (Quadrupole mass spectrometry) was utilized to determine the concentration of free radicals in plasma, and the epitaxial silicon thin film was deposited by ECR-CVD (electron cyclotron resonance chemical vapor deposition). The film quality such as thickness and crystallinity were investigated by Ellipsometer and Raman Spectrometer. The relationship between the film quality and plasma characteristics with varying process parameters (microwave power, working pressure, magnetic field resonance position and dilution ratio) was discussed.
    The results show that the deposition rate will increase with the increasing of microwave power, but the crystallinity will decrease at high microwave power. High process pressure will cause high deposition rate and crystallinity. If the hydrogen dilution ratio is enhanced, the mechanism of hydrogen etching will cause the increasing of crystallinity, but decrease the deposition rate. Finally, larger magnetic coil current will cause better deposition rate because the plasma zone is close to substrate, but the ion bombardment effect will cause worse crystallinity.
    Consequently, the research integrates the OES and QMS to analyze the mechanism of ECR plasma, and by adjusting the process parameters, the property of epitaxial silicon thin film is determined.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1前言 1 1-2 研究動機及目的 2 第二章、文獻整理與基本回顧 4 2-1 電漿簡介 4 2-1-1 電漿原理 4 2-1-2 電漿特性 7 2-1-3 電子迴旋共振電漿 8 2-2薄膜沉積 10 2-2-1 薄膜沉積原理 10 2-2-2 化學氣相沉積(CVD) 13 2-3 磊晶矽薄膜(Epitaxial Silicon) 15 2-4 電漿診斷系統 21 2-4-1 光放射光譜儀 21 2-4-2 四極柱質譜儀(QMS) 22 第三章、實驗方法與設備 24 3-1 實驗流程 24 3-2 實驗步驟 25 3-2-1 參數設定 25 3-2-2 實驗流程 26 3-3 實驗設備及原理 27 3-3-1 電子迴旋共振化學氣相沉積系統(ECR-CVD) 27 3-3-2 光放射光譜儀OES 32 3-3-3 四極柱質譜儀QMS 34 3-3-4 橢圓偏光儀 43 3-3-5 拉曼光譜儀 44 第四章、結果與討論 45 4-1 改變微波功率之電漿及薄膜分析 47 4-1-1 質譜儀量測 47 4-1-2 光譜儀量測 50 4-2 改變製程壓力之電漿及薄膜分析 54 4-2-1 質譜儀量測 54 4-2-2 光譜儀量測 57 4-3 改變氫稀釋比之電漿及薄膜分析 60 4-3-1 質譜儀量測 61 4-3-2 光譜儀量測 63 4-4 改變磁場組態之電漿及薄膜分析 66 4-4-1 質譜儀量測 67 4-4-2 光譜儀量測 69 第五章、結論 72 參考文獻 74

    [1] S. J. DeBoer, V. L. Dalal, G. Chumanov and R. Bartels,” Low temperature epitaxial silicon film growth using high vacuum electron-cyclotron-resonance plasma deposition”, Appl. Phys. Lett., Vol. 66, pp. 19-21, 1995.
    [2] Y. Kawai, N. Itagaki, M. Koga and H. Muta, “Production of low electron temperature ECR plasma”, Surface & Coatings Technology, Vol 193, pp. 11-16, 2005.
    [3] C. M. Chou, C. C. Chuang, C. H. Lin, C. J. Chung and J. L. He, “Plasma diagnostics for pulsed-dc plasma-polymerizing para-xylene using QMS and OES”, Surface & Coatings Technology, Vol 205, pp. 4880-4885, 2011.
    [4]B. Chapman, Glow Discharge Processes, John Wiley & Sons lnc, 1980.
    [5]羅正忠,半導體製程技術導論,歐雅出版社,2006年
    [6] M. A. Liberman and A. J. Lichtenberg, Plasma Discharges and Material Processing 2nd, A John Wiley & Sons, Inc Press, 2005.
    [7] M. Shindo, S. Hiejima, Y. Ueda, S. Kawakami, N. Ishii and Y. Kawai, “Parameters measurement of ECR C4F8/Ar plasma”, Thin Solid Films, Vol 345, pp. 130-133, 1990.
    [8] J. A. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., Vol 47, pp.399-459, 1984.
    [9] K. Reichelt, “Nucleation and growth of thin films”, Vacuum, Vol 38, pp.1083-1099, 1988.
    [10]陳一塵,薄膜物理課程講義,桃園市,國立中央大學,民國103年。
    [11] 施敏,半導體元件物裡與製作技術, 第二版,黃調元譯,新竹市,國立交通大學出版社,民國90年。
    [12] C. C. Tsai, G. B. Anderson and R. Thompson, “Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma”, Journal of Non-Crystalline Solids, Vol 137&138, pp. 673—676, 1991.
    [13] S. J. DeBoer, V. L. Dalal, G. Chumanov and R. Bartels, “Low temperature epitaxial silicon film growth using high vacuum electron-cyclotron-resonance plasma deposition”, Appl. Phys. Lett., Vol. 66, pp. 19, 1995.
    [14] K. Sasaki, H. Tomoda and T. Takada, “Etching action by atomic hydrogen and low temperature silicon epitaxial growth on ECR plasma CVD”, Vacuum, vol. 51, No. 4, pp. 537-541, 1998.
    [15] J. Platen, B. Selle, I. Sieber, S. Brehme, U. Zeimer and W. Fuhs, “Low-temperature epitaxial growth of Si by electron cyclotron resonance chemical vapor deposition”, Thin Solid Films, Vol. 381, pp. 22-30, 2001.
    [16] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azuma and H. Shirai, “ Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp.256-260, 2001.
    [17] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol. 337, pp.1-6, 1999.
    [18] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol.78, pp.3-26, 2003.
    [19] A. Matsuda. “Thin-Film Silicon —Growth Process and Solar Cell Application”, J.Japan Apply Physics, Vol 43, pp. 7909–7920, 2004.
    [20] Y. Ruohe and L. Kuixun, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, Journal of Shantou University, Vol. 13, pp. 16-19, 1997.
    [21] W. M. M. Kessels, M. C. M. van de Sanden and D. C. Schram, “Film growth precursors in a remote SiH4 plasma used for high-rate deposition of hydrogenated amorphous silicon”, J. Vac. Sci. Technol. A, Vol. 18, pp. 5-15, 2000.
    [22] E. Camps, F. Becerril, S. Muhl, O. Alvarez-Fregoso and M. Villagr´an, “Microwave plasma characteristics in steel nitriding process”, Thin Solid Films, Vol.373, pp. 293-298, 2000.
    [23] M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, “Anomalous behavior of electron temperature in silane glow discharge plasmas”, Thin Solid Films, Vol 390, pp. 83-87, 2001.
    [24] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials &Solar Cells, Vol 78, pp. 3–26, 2003.
    [25] H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu and R. Zhan, “Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition”, Diamond & Related Materials, Vol. 16, pp.675-678, 2007.
    [26] R. Barni, S. Zanini and C. Riccardi, “Diagnostics of reactive RF plasmas”, Vacuum, Vol. 82, pp. 217-219, 2008.
    [27] S. Zimmermann, N. Ahner, F. Blaschta, M. Schaller, H. Rulke, S.E. Schulz and T. Gessner, “Analysis of the impact of different additives during etch processes of dense and porous low-k with OES and QMS”, Microelectronic Engineering, Vol. 87, pp.337-342, 2010.
    [28] S. B. Jin, J. S. Lee, Y. S. Choi, I. S. Choi, J. G. Han and M. Hori, “Scale-up approach for industrial plasma enhanced chemical vapor deposition processes and SiOx thin film technology”, Thin Solid Films, Vol. 547, pp. 193-197, 2013.
    [29] T. Moiseev, D. Chrastina, G. Isella and C. Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
    [30] P. K-Nune, J. Perrin, J. Guillon and J. Jolly,” Mass spectrometry detection of radicals in SiH4-CH4-H2 glow discharge plasmas”, Plasma Sources Sci. Technol, Vol 9, pp. 250-259, 1995.
    [31] Y. Inoue and O. Takai, “Properties of silicon oxide films deposited by plasma-enhanced CVD using organosilicon reactants and mass analysis in plasma”, Thin Solid Films, Vol. 341, pp.47-81, 1999.
    [32] M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, “Anomalous behavior of electron temperature in silane glow discharge plasmas”, Thin Solid Films, Vol. 390, pp. 83-87, 2001.
    [33] H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu and R. Zhan, “Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition”, Diamond & Related Materials, Vol. 16, pp. 675-678, 2007.
    [34] T. Moiseev, D. Chrastina, G. Isella and C. Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
    [35] C. M. Chou, C. C. Chuang, C. H. Lin, C. J. Chung and J. L. He, “Plasma diagnostics for pulsed-dc plasma-polymerizing para-xylene using QMS and OES”, Surface & Coatings Technology, Vol. 205, pp. 4880-4885, 2011.
    [36] P. Tristant, Z. Ding, Q. B. Trang, V. H. Hidalgo, J. L. Jauberteau, J. Desmaisonn and C. Dong, “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51–58, 2001.
    [37] L. C. Hu , G. M. Ruan, T. C. Wei, C. J. Wang, Y. W. Lin, C. C. Lee, Y. Kawai and T. Li , “Comparative and integrative study of Langmuir probe and optical emission spectroscopy in a variable magnetic field electron cyclotron resonance chemical vapor deposition process used for depositing hydrogenated amorphous silicon thin films”, Thin Solid Films, Vol 570, pp.574-579, 2013.
    [38] P. Tristant, Z. Ding, Q. B. Trang, V. H. Hidalgoa, J. L. Jauberteaua, J. Desmaisona and C. Dongb, “Microwave plasma enhanced CVD of aluminum oxide films: OES diagnostics and influence of the RF bias”, Thin Solid Films, Vol 390, pp. 51-58, 2001.
    [39]蔡旺霖,「微晶矽薄膜製程於高頻電漿反應器之電漿診斷與模型研究」,私立中原大學,碩士論文,2010年。
    [40]Hiden原廠操作手冊

    QR CODE
    :::