跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳子江
Zhi-Jian Chen
論文名稱: 鈦酸鋇晶體應用於光訊號連結及自/互泵激相位共軛之研究
指導教授: 游漢輝
Hon-Fai Yau
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 88
語文別: 中文
論文頁數: 191
中文關鍵詞: 鈦酸鋇訊號連結相位共軛自泵激相位共軛互泵激相位共軛
外文關鍵詞: BaTiO3, signal interconnecttion, phase conjugation, self-pumped phase conjugation, mutually pumped phase conjugation
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用貓式自泵激相位共軛器的機制並結合四波混合的光折變效應,進而設計出主動式同調光訊號連結器。當請求站要求訊號時,連結器才把訊號傳送過去,同時所傳送訊號的明暗對比可與輸入訊號的相同或者相反。我們提供兩種改善輸出訊號訊雜比的方法,也在元件中增加了光資訊儲存的功能。
    另外,我們也對特殊切割的鈦酸鋇晶體進行相位共軛光的量測。當這顆以45o雙斜切面的晶體做為自/互泵激相位共軛器時,其優點除了在產生相位共軛光時入射光的射掠角度與入射位置有較大、較寬的接受範圍外,反應時間也很快,傳訊的影像品質高,與其它晶體相較也是最快達到穩定的輸出值。這結果說明如果將此特殊切割的晶體替代其它晶體應用於相位共軛器時,可免除不同晶體在製程上的變更、生長的困難及摻雜材質與濃度的選擇,使用本論文雙斜切面特殊的切割晶體來獲得品質佳的共軛器,這是個很好的選擇。
    再從晶體+c面入射的架構來看,自泵激相位共軛器能各自產生兩道穩定的相位共軛光,簡化元件數目,對昂貴且生長不易的晶體,有其應用的必要性。在大角度入射時,從晶體的+c面入射的風箏形互泵激相位共軛器有相位共軛輸出動態穩定的特色,這是應用在光通訊、光連結不可或缺的條件。
    以上我們所提出的這些光學元件,可以作為光通訊連結之用。這些元件架構簡單,應用光本身或以光控制光的方式來達成光通訊、光連結的目的。由於沒有額外的電路設計,在固態及半導體雷射小型化的潮流趨勢下,相信在未來微積光學及光電腦的應用上將有其重要性。


    目錄 摘要I 目錄II 圖索引VI 表索引IX 第一章 緒論1 1.1 研究背景3 1.2 研究動機6 1.3 論文內容之編排9 參考文獻11 第二章 光折變理論、效應與相位共軛器15 2.1 帶傳輸模型與光折變效應16 2.2 二波混合25 2.3 四波混合38 2.4 光扇效應47 2.5 光洗效應49 2.6 光學相位共軛器50 2.6.1 貓式自泵激相位共軛器56 2.6.2 互泵激相位共軛器59 參考文獻63 第三章 主動式同調光訊號連結器66 3.1 光訊號連結器的操作原理69 3.2 光訊號連結-對比相同的影像輸出72 3.2.1改善對比-請求光 時間調制法83 3.2.2改善對比-自生成光柵加強法85 3.3 光訊號連結-對比反轉的影像輸出87 3.4 光連結、光儲存雙功能元件89 3.5 結論92 參考文獻93 第四章450雙斜切面相位共軛器(一)-SPPC 95 4.1 450雙斜切面的BaTiO3晶體97 4.2 實驗的安排102 4.3 雙斜切面SPPC效能之研究104 4.3.1 相位共軛輸出與晶體穿透光能量104 4.3.2 入射光強對共軛器的影響106 4.3.3 入射位置對共軛器的影響109 4.3.4 射掠角對共軛器的影響111 4.3.5 解析度112 4.4 四顆晶體在共軛光輸出上的比較114 4.5 結論116 參考文獻118 第五章 450雙斜切面相位共軛器(二)-MPPC 120 5.1 實驗的安排122 5.2雙斜切面MPPC效能之研究125 5.2.1 相位共軛光的穩定性125 5.2.2 入射光強對反應時間及穩態反射率的關係126 5.2.3 入射位置與穩態反射率值的關係128 5.2.4 兩入射光夾角與穩態反射率值的關係129 5.2.5 入射光強比與穩態反射率值的關係132 5.2.6 解析度133 5.3 結論135 參考文獻136 第六章 風箏式互泵激相位共軛器138 6.1 實驗的安排140 6.2 實驗結果145 6.2.1 魚頭式相位共軛的動態不穩定145 6.2.2 風箏式相位共軛的動態穩定148 6.2.3 風箏式相位共軛的機制151 6.3 結論152 參考文獻153 第七章 雙貓式自泵激相位共軛器155 7.1 實驗的安排157 7.2 實驗結果160 7.2.1 雙貓式相位共軛在時間上的輸出160 7.2.2 貓式相位共軛輸出的動態不穩定161 7.2.3 入射角度與雙貓式相位共軛的關係163 7.2.4 解析度164 7.2.5 雙貓式相位共軛的機制166 7.3 結論167 參考文獻168 第八章 總結171 附錄A173 附錄B181 附錄C187 符號索引188

    參考文獻
    [1]D. Gabor, "A new microscopic principle," Nature, 161, 777 (1948).
    [2]R. J. Collier, C. B. Bruckhardt, and L. H. Lin, Optical holography, Academic press, New York (1971).
    [3]A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. C. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 (1966).
    [4]F. S. Chen, J. T. LaMacchia, and D.B. Fraser, "Holographic storage in lithium niobate," Appl. Phys. Lett. 13, 223 (1968).
    [5]F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3, " j. Appl. Phys. 40, 3389 (1969).
    [6]L. Young, W. K. Y. Wong, M. L. W. Thewait and W. D. Crnish, "Theory of formation of phase holograms in lithium niobate," Appl. Phys. Lett. 24, 264 (1974).
    [7]G. A. Alphonse, R. C. Alig, O. L. Staebler and W. Phillips, "Time-dependent characteristics of photo-induced space charge field and phase holograms in lithium niobate and other photorefractive materials," RCA Review 36, 213 (1975).
    [8]D. Vonderlinde and A. M. Glass, "Photorefractive effects for reversible holographic storge of information," J. Appl. Phys. 8,85 (1975).
    [9]D. M. Kim, R. R. Shah, T. A. Rabson and F. K. Tittel, "Nonlinear dynamic theory for photorefractive phase hologram formation," Appl. Phys. Lett. 28, 338 (1976).
    [10]N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectric 22, 949 (1979).
    [11]J. Feiberg, D. Heiman, A. R. Tanguay and R. W. Hellwarth, "Photorefractive effects and light-induced charge migration in barium titanate," J. Appl. Phys. 51, 1297 (1980).
    [12]J. Feinberg, and R.W. Hellwarth, "Phase-conjugating mirror with continuous-wave ," Opt. Lett. 5, 519 (1980).
    [13]J. Feinberg, "Self-pumped, continuous-wave phase conjugator using internal reflection," Opt. Lett. 7, 486 (1982).
    [14]J. Feinberg, "Asymmetric self-defocusing of an optical beam from the photorefractive effect," J. Opt. Soc. Am. 72, 46 (1982).
    [15]K.R. MacDonald and J. Feinberg, "Theory of a self-pumped phase conjugator with two coupled interaction region," J. Opt. Soc. Am., vol. 73, pp. 548-553 (1983).
    [16]T.Y. Chang, and R.W. Hellwarth, "Optical phase conjugation by backscttering in barium titanate", Opt. Lett. 10, 408 (1985)
    [17]M.D. Ewbank, "Mechanism for photorefractive phase conjugation using incoherent beams," Opt. Lett. 13, 47 (1988).
    [18]H. F. Yau, P. J. Wang, E. Y. Pan and J. Chen, "Self-pumped Phase Conjugation with Femtosecond Pulses Using BaTiO3,"Opt. Lett. 21(15), 1168 (1996).
    [19]H. F. Yau, P. J. Wang, E. Y. Pan,, J. Chen and J. Y. Chang "Self-pumped Phase Conjugation with Picosecond and Femtosecond Using BaTiO3," Opt. Commun. 135, 331 (1997).
    [20]S. Ashihara, O. Matoba, T. Shimura, and K. Kuroda, ²Mutually pumped phase conjugators with picosecond pulses,² J. Opt. Soc. Am. B 15, 1971 (1998).
    [21]B. Fischer, S. Weiss, and S. Sternkar, "Spatial light modulation and filtering effects in photorefractive wave mixing," Appl. Phys. Lett. 50, 483 (1987).
    [22]P. Gunter, J.-P. Huiganrd, Photorefractive material and their applications I, Springer-Verlag, Berling (1988).
    [23]P.S. Brody, "Grating structure in self-pumping barium titanate by local erasure," Appl. Phys. Lett. 53, 262 (1988).
    [24]J. E. Ford, Y. Fainman, and S. H. Lee, "Time-integrating interferometry using photorefractive fannout," Opt. Lett. 13, 856 (1988).
    [25]S. Weiss, M. Segev, S. Sternklar, and B. Fischer, "Photorefractive dynamic optical interconnects," Appl. Opt. 27, 3422 (1988).
    [26]P. Yeh, T. Y. Chang, and P. H. Beckwith, "Real-time optical image subtraction using dynamic holographic interference in photorefractive media," Opt. Lett. 13, 586 (1988).
    [27]P. Gunter, J.-P. Huiganrd, Photorefractive material and their applications II, Springer-Verlag, Berling (1989).
    [28]J.E. Ford, Y. Fainman, and S.H. Lee, "Enhanced photorefractive performance of form 45-cut BaTiO3," Appl. Opt. 28, 4808 (1989).
    [29]D. Wang, Z. Zhang, Y. Zhu, S. Zhang, and P. Ye, "Observation on the coupling channel of two mutually incoherent beams without internal reflection in BaTiO3," Opt. Commun. 73, 495 (1989).
    [30]T.Y. Chang, "Spatial-mode cleanup of a pulsed laser beam through mutually pumped phase conjugation with a cw reference," Opt. Lett. 15, 1342 (1990).
    [31]A.E. Chiou and P. Yeh, "Symmetry filters using optical correlation and convolution," Opt. Eng. 29, 1065 (1990).
    [32]G. J. Dunning, D. M. Pepper, and M. B. Kein, "Control of self-pumped phase-conjugate reflectivity using incoherent erasure," Opt. Lett. 15, 99 (1990).
    [33]M. Segev, Y. Ophir, and B. Fischer, "Nonlinear multi two-wave mixing, the fanning process and its bleaching in photorefractive media," Opt. Commun. 77, 265 (1990).
    [34]M. Ogusu, S.-i. Tanaka, and K. Kuroda, "Optical logic operations using three-beam phase-conjugate interferometry," Jpn. J. of Appl. Phys. 29, L1265 (1990).
    [35]D. Z. Anderson, C. Benkert, B. Chorbajian, and A. Hermanns, "Photorefractive filp-flop," Opt. Lett. 16, 250 (1991).
    [36]P. Yeh, D. Zhang, and C. Gu, "Parallel subtraction of Fourier power spectrum using holographic interferometry," Opt. Lett. 17, 70 (1992)
    [37]C.-C. Chang, Y.-P. Tong, and H.-F. Yau, "Rotational invariant pattern recognition using photorefractive correlator," Jpn. J. of Appl. Phys. 31, L43 (1992).
    [38]F. T. S. Yu, S. Wu, S. Rajan, and D. A. Gregory, "Compact joint transform correlator with a thick photorefractive crystal," Appl. Opt. 31, 2416 (1992).
    [39]Q. B. He, P. Yeh, L. J. Hu, S. P. Lin, T. S. Yeh, S. L. Tu, S. J. Yang, and K. Hsu, "Shift-invariant photorefractive joint-transform correlator using Fe:LiNbO3 crystal plates," Appl. Opt., 32, 3113 (1993).
    [40]Y.-H. Hong, P. Xie, J.-H. Dai, Y. Zhu, H.-G. Yang, and H.-J. Zhang, "Fanning effects in photorefractive crystals," Opt. Lett. 18, 772 (1993).
    [41]Y. S. Qiu, H. Li, T. S. Lu, J. Zhuang, and X. C. Gao, "Optical logic operations with self-pumped phase-conjugation output in photorefractive materials," Opt. Commun. 98, 29 (1993).
    [42]D. Psaltis and F. Mok, "Holographic Memories," Scientific American, 273(5). 70 (1995).
    [43]G. Asimellis, J. Khoury, J. Kane, and C. Woods, "Two-port photorefractive joint transform correlator," Opt. Lett. 20, 2517 (1995).
    [44]J. Neumann, M. Rowe, and E. Kratzig, "Photorefractive amplification and generation of light beam in BaTiO3 controlled by the intensity of the pump light," Appl. Phys. B, 67, 73 (1998).
    [45]C. C. Chang, T. C. Chen, L. C. Tang and H. F. Yau, "Elimination of dynamic instabilities in the +c-face incident photorefractive BaTiO3 mutually pumped phase conjugator," Jpn. J. Appl. Phys., Vol. 38, 567-570 (1999).
    [46]C. C. Chang, Y. P. Tong, T. C. Chen, H. F. Yau and P. X. Ye, "Mutually pumped phase conjugator using a BaTiO3 crystal having two inclined faces," Appl. Phys. B, Accept (2000).
    [47]H. C. Kung, H. F. Yau, H. Y. Lee, N. Kukhtarev, T. C. Chen, C. C. Sun, C. C. Chang and Y. P. Tong, "Double phase conjugation with orthogonally polarized beams in a BaTiO3 crystal," Opt. Lett, Accept, April (2000).
    [48]H. Y. Lee, T. C. Chen and H. F. Yau, "Coherent optical signal transferring upon requesting using a BaTiO3 crystal," Revised to Applied Optics, May (2000).
    [49]T. C. Chen, C. C. Chang, L. C. Tang and H. F. Yau, "High-resolution double self-pumped phase conjugation with +c-face incident configuration in a BaTiO3, " Submitted to Jpn. J. Appl. Phys., April (2000).
    [50]H. F. Yau, H. C. Kung, T. C. Chen, H. Y. Lee, C. C. Sun, C. C. Chang, Y. P. Tong and J. Chen, "Ordinary Polarized Phase Conjugator using Photovoltaic Effect," Submitted to Optics Communications, May (2000).

    QR CODE
    :::