| 研究生: |
黃逸溱 Yi-Jen Huang |
|---|---|
| 論文名稱: | A Data-Driven Econometric Evaluation of 15 Countries' CCUS Policy Effectiveness |
| 指導教授: |
葉錦徽
Jin-Huei Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 國際經營管理碩士學位學程 International Master of Business Administration Program(IMBA) |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 碳封存 、碳捕捉 、政策 、資料 、成本效益 |
| 外文關鍵詞: | Cost Effectiveness |
| 相關次數: | 點閱:29 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
截至2024年,全球碳捕集、利用與封存(CCUS)的裝置容量僅為每年5,000萬噸二氧化碳,遠低於為實現《巴黎協定》目標至2030年所需的12億噸。為探究為何部分G20國家的CCUS發展顯著領先,以及哪些政策工具能有效將公共支出轉化為長期碳封存成果,本研究建立涵蓋2015至2024年15國的專屬面板資料,並設計「淨零政策強度指數」(Net Zero Policy Strength Index,範圍0至5),由五項二元變數組成,包括:國家氫能戰略、稅務抵減、碳排交易制度(ETS)、直接補助與針對CCUS的專法立法。
透過成本效益比分析、迴歸模型、固定效果估計以及K-means聚類,本研究發現:每新增一項政策工具,平均可帶來每年1.6百萬噸的碳捕集增量。相較之下,僅有碳價政策在未納入其他支持性政策前,對捕集效果影響不顯著。唯有與補助、法規清楚化、以及市場誘因等工具相結合,碳價訊號方能發揮其政策效能。
綜合而言,政策的「廣度」較單一價格水準更能決定CCUS的部署潛力。包括美國、英國、加拿大與挪威等領先國家,正是透過組合多元策略,才能在2024年前達到碳捕集量提升與單位成本降至每百萬噸五千萬美元以下的成效。對於希望加速推展CCUS的決策者而言,應優先構建多元化政策架構,並持續追蹤單位捕集成本,以確保公共資源獲得最大的氣候效益。
Carbon capture, utilization, and storage (CCUS) installed capacity worldwide was just 50 Mt CO₂ annually in 2024, much short of the 1.2 Gt needed by 2030 to meet Paris Agreement commitments. This study investigates why some G20 economies have developed more quickly than others and which policy tools best convert public spending into long-term CO₂ storage. I create a Net Zero Policy Strength index (0–5) using a bespoke panel dataset of 15 nations from 2015 to 2024. This index is based on five binary indicators: national hydrogen strategy, tax credits, ETS, direct subsidies, and legislation unique to CCUS. Cost-effectiveness ratios, regression analysis, fixed-effects modeling, and k-means clustering show that every extra policy is linked to an average yearly increase of 1.6 Mt CO₂ collected. However, until it is incorporated into a larger policy mix, carbon price by itself has no discernible impact. Only when used in conjunction with other tools can emissions-trading schemes make a significant contribution. By combining various strategies, the most successful nations—including the US, UK, Canada, and Norway—are able to attain high capture volumes and cost reductions below $50 million per Mt by 2024. When considered collectively, the data suggests that, in the current market environment, policy scope rather than the amount of carbon prices determines the extent to which CCUS may be implemented on a broad scale. Only when price signals are integrated into a larger package of grants, legal clarification, and market pull mechanisms do they become effective. To guarantee that public monies provide the greatest possible climate benefit, policymakers aiming for quick scale-up should prioritize putting together multi-instrument frameworks and monitoring the cost per ton gathered.
1. Bui, M., Fajardy, M., Mac Dowell, N., et al. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062–1176. https://doi.org/10.1039/C7EE02342A
2. Chen, S., Zhang, Y., Liu, Q., et al. (2022). A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renewable and Sustainable Energy Reviews, 167, 112537. https://doi.org/10.1016/j.rser.2022.112537
3. Hanson, E., Nwakile, C., & Hammed, V. O. (2025). Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO₂ emissions. Results in Surfaces and Interfaces, 18, 100381. https://doi.org/10.1016/j.rsurfi.2024.100381
4. Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–443. https://doi.org/10.1016/j.rser.2014.07.093
5. Liu, E., Lu, X., & Wang, D. (2023). A systematic review of carbon capture, utilization and storage: Status, progress and challenges. Energies, 16(6), 2865. https://doi.org/10.3390/en16062865
6. McLaughlin, H., Wong-Parodi, G., Walker, V., et al. (2023). Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renewable and Sustainable Energy Reviews, 177, 113215. https://doi.org/10.1016/j.rser.2023.113215
7. Pörtner, H.-O., Roberts, D. C., Tignor, M., et al. (Eds.). (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
8. Roy, P., Mohanty, A. K., & Misra, M. (2023). Prospects of carbon capture, utilization and storage for mitigating climate change. Environmental Science: Advances, 2(3), 409–423. https://doi.org/10.1039/D2VA00236A
9. Storrs, K. D. P., Lyhne, I., & Drustrup, R. (2023). A comprehensive framework for feasibility of CCUS deployment: A meta-review of literature on factors impacting CCUS deployment. International Journal of Greenhouse Gas Control, 125, 103878. https://doi.org/10.1016/j.ijggc.2023.103878
10. International Energy Agency (IEA). (2024). World Energy Outlook 2024 – Analysis. https://www.iea.org/reports/world-energy-outlook-2024 (Accessed: 25 June 2025).