跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游政泓
Cheng-Hung Yu
論文名稱: 陰極氧濃度效應於不同溫度甲烷固態氧化物燃料電池影響之實驗研究
An Experimental Investigation on the Effect of Oxygen Concentration in Cathode for a Methane Solid Oxide Fuel Cell at Different Temperatures
指導教授: 施聖洋
Shenq-Yang Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 甲烷SOFC陰極氧濃度效應溫度效應穩定性測試碳沉積
外文關鍵詞: Methane-fueled solid oxide fuel cell, cathode oxygen concentration effect, temperature effect, stability measurement, carbon deposition
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用鈕扣型固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC), 實驗量測探討陰極氧濃度與溫度效應,對甲烷SOFC性能曲線、電化學阻抗頻譜與穩定性之影響。實驗條件含三種操作溫度(T = 750, 800, 850℃),陽極固定使用50 sccm CH4 + 150 sccm N2,陰極則分別使用五種不同氧氣濃度:(1) 200 sccm Air (21% O2)、(2) 80 sccm O2 + 120 sccm N2 (40% O2)、(3) 120 sccm O2 + 80 sccm N2 (60% O2)、(4) 160 sccm O2 + 40 sccm N2 (80% O2)與(5) 200 sccm O2 (100% O2)五種氧氣濃度。結果顯示,在五種陰極氧濃度條件下,性能皆因溫度增加而增加,從750℃增加到850℃,性能會提高約29-37%,這是因為甲烷裂解反應會隨溫度增加而增強,使得性能有所升高。在不同陰極氧濃度中,陰極為100%氧氣條件表現出最高之性能,隨著氧濃度的減少性能會越低,這是由於氣體中越多氮氣,其會使氧氣傳輸受到阻礙所導致。在三種溫度(T = 750, 800, 850℃)下,陰極為純氧條件較空氣條件之最大功率密度分別提升59.45%、79.65%、60.58%,這是因提高陰極氧氣濃度不但能減少擴散阻抗,更能增加陰極氧分壓,故能達到性能提升之效果。
    隨後探討陰極氧氣濃度對電池碳沉積與穩定性之影響,在750℃操作溫度與800 mA cm-2條件下,陽極使用50 sccm CH4 + 150 sccm N2,陰極分別使用200 sccm Air與200 sccm O2進行電池穩定性測試。結果顯示,在陰極使用空氣條件下之電池僅維持13小時,性能就會快速衰退。但是,當陰極使用純氧時,除了性能表現最佳外,並且可持續穩定運作發電,其電池性能在120小時操作時間內每小時僅衰退0.052%。這代表著陰極為純氧能有效延長電池之壽命,主因為陰極氧氣濃度的提升,能使更多的氧離子擴散至陽極表面,與鎳表面生成之碳進行反應,達到除碳之效果。我們針對上述兩種穩定性測試後之電池片進行陽極表面SEM與XRD分析,可以觀察到陰極為氧氣條件較空氣條件所發現之碳明顯較少,且前者微結構幾無可見的破壞。因此,證明陰極使用純氧之甲烷SOFC,可有抑制陽極碳沉積之效果。本研究結果,對未來SOFC應用,除了有助提高性能外,並對含碳燃料之碳沉積問題與電池壽命皆有所助益。


    This thesis investigates experimentally the effect of oxygen concentration in cathode on the cell performance, electrochemical impedance spectroscopy (EIS), and stability of an anode-supported button cell fed by methane (50 CH4 sccm + 150 N2 sccm) as a fuel at three different temperatures (T = 750, 800, 850℃). There are five different oxygen concentrations used in the cathode, respectively. (1) 200 sccm Air (21% O2), (2) 80 sccm O2 + 120 sccm N2 (40% O2), (3) 120 sccm O2 + 80 sccm N2 (60% O2), (4) 160 sccm O2 + 40 sccm N2 (80% O2), and (5) 200 sccm O2 (100% O2). Experiments are conducted in an already- established, high-temperature, high-pressure solid oxide fuel cell (SOFC) testing platform. When T increases from 750℃ to 850℃, the increment percentages of the cell performance increase about 29-37% for all five concentration cases. This is because the rate of methane decomposition increases with increasing temperature, resulting in an increase of the cell performance. The cathode applies 100% oxygen has the largest maximum power density (Pmax, 100%) among all five oxygen concentration cases, while the case of 21% O2 has the lowest maximum power density (Pmax, 21%). The percentage rates of Pmax, 100%/ Pmax, 21% are 59.45%/79.65%/60.58% at T = 750, 800, 850℃, respectively. The performance is lower as the oxygen concentration is reduced because the nitrogen contained in the gas hinders the transportation of oxygen. When pure oxygen is used, the improvement in performance is due to the removal of diffusion losses and the improvement of reaction rates in the cathode given a partial pressure of one for pure oxygen. The stability test of the methane SOFC for the pure oxygen case at 750℃ and 800 mA cm-2 shows that the cell can be stably operated for at least 120 hours with a rather small cell performance decrement of 0.052% per hour, indicating that the carbon deposition can be suppressed by using pure oxygen in cathode. On the other hand, when using air as the cathode gas, the cell can be only operated 13 hours at the same 750℃ and 800 mA cm-2 conditions, where a serious carbon deposition problem is observed. In the pure oxygen case, the cell durability can be extended, because more oxygen ions can diffuse from the electrolyte YSZ interface to the Ni-YSZ anode. Then the oxygen ions can react with carbon and thus remove carbon on the Ni surface. The scanning electron microscope (SEM) images and X-ray diffraction (XRD) show that only a little carbon deposition can be observed at the anode surface without any visible destruction of the anode microstructures for the case of pure oxygen. This substantiates that using pure oxygen can inhibit the anode carbon deposition, in which the cell performance during the stability test remains roughly unchanged. These results are useful to improve the carbon deposition problem and extend the longevity of SOFC.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 x 符號說明 xi 第一章 前言 1 1.1 研究動機 1 1.2 問題所在 3 1.3 研究方法 5 1.4 論文綱要 6 第二章 文獻回顧 7 2.1 固態氧化物燃料電池基本介紹 7 2.2 本實驗室SOFC相關研究回顧 8 2.3 SOFC之陰極氧濃度相關文獻 11 2.4 溫度效應於甲烷SOFC影響之相關文獻 15 2.5 甲烷SOFC抑制碳沉積之相關文獻 19 2.5.1 對甲烷燃料加濕 19 2.5.2 甲烷燃料加空氣 21 2.5.3 甲烷燃料加二氧化碳 21 2.5.4 甲烷燃料加氨 21 第三章 實驗設備與量測方法 28 3.1 SOFC實驗量測平台 28 3.2 鈕扣型SOFC全電池載具 30 3.3 實驗流程與量測操作參數設定 33 第四章 結果與討論 36 4.1 甲烷燃料於不同陰極氧濃度SOFC之溫度效應 36 4.2 陰極氧濃度效應對SOFC性能之影響 41 4.3 陰極氧濃度效應於甲烷SOFC穩定性研究 49 第五章 結論與未來工作 58 5.1 結論 58 5.2 未來工作 59 參考文獻 60 附錄 67 附錄一 67 附錄二 70 附錄三 73 附錄四 77

    [1] Global Warming of 1.5 ºC, Intergovernmental panel on climate change. (https://www.ipcc.ch/sr15/).
    [2] J. Sullivan, Intergovernmental panel on climate change: 30 years informing global climate action, United Nations Foundation, December 9, 2019 (https://unfoundation.org/blog/post/intergovernmental-panel-climate-change-30-years-informing-global-climate-action/).
    [3] D. Jones, Global Electricity Review 2022, Ember, March 30, 2022
    (https://ember-climate.org/insights/research/global-electricity-review-2022/).
    [4] Z. Wu, P. Zhu, J. Yao, S. Zhang, J. Ren, F. Yang, Z. Zhang, Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations, Appl. Energy 279 (2020) 115794
    (https://doi.org/10.1016/j.apenergy.2020.115794).
    [5] E. Soleymani, S. G. Gargari, H. Ghaebi, Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC, Renew. Energy 177 (2021) 495-518
    (https://doi.org/10.1016/j.renene.2021.05.103).
    [6] S. S. Shy, S. C. Hsieh, H. Y. Chang, A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements, J. Power Sources 396 (2018) 80-87
    (https://doi.org/10.1016/j.jpowsour.2018.06.006).
    [7] S. S. Shy, Y. T. Hung, A pressurized ammonia-fed planar anode-supported solid oxide fuel cell at 1-5 atm and 750-850°C and its loaded short stability test, Int. J. Hydrog. Energy 45 (2020) 27597-29610
    (https://doi.org/10.1016/j.ijhydene.2020.07.064).
    [8] P. Qiu, S. Sun, X. Yang, F. Chen, C. Xiong, L. Jia, J. Li, A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells, Int. J. Hydrog. Energy 46 (2021) 25208-25224
    (https://doi.org/10.1016/j.ijhydene.2021.05.040).
    [9] H. Aslannejad, L. Barelli, A. Babaie, S. Bozorgmehri, Effect of air addition to methane on performance stability and coking over NiO-YSZ anodes of SOFC, Appl. Energy 177 (2016) 179-186
    (https://doi.org/10.1016/j.apenergy.2016.05.127).
    [10] N. Laosiripojana, S. Assabumrungrat, Catalytic dry reforming of methane over high surface area ceria, Appl. Catal. B 60 (2005) 107-116
    (https://doi.org/10.1016/j.apcatb.2005.03.001).
    [11] X. Kong, Y. Tian, X. Zhou, X. Wu, J. Zhang, Surface tuned La0.9Ca0.1Fe0.9Nb0.1O3-δ based anode for direct methane solid oxide fuel cells by infiltration method, Electrochim. Acta 234 (2017) 71-81
    (https://doi.org/10.1016/j.electacta.2017.03.046).
    [12] H. Ding, D. Zhou, S. Liu, W. Wu, Y. Yang, Y. Yang, Z. Tao, Electricity generation in dry methane by a durable ceramic fuel cell with high-performing and coking-resistant layered perovskite anode, Appl. Energy 233-234 (2019) 37-43 (https://doi.org/10.1016/j.apenergy.2018.10.013).
    [13] Z. Lyu, H. Li, M. Han, Electrochemical properties and thermal neutral state of solid oxide fuel cells with direct internal reforming of methane, Int. J. Hydrog. Energy 44 (2019) 12151-12162
    (https://doi.org/10.1016/j.ijhydene.2019.03.048).
    [14] L. Lei, J. M. Keels, Z. Tao, J. Zhang, F. Chen, Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming, Appl. Energy 224 (2018) 280-288 (https://doi.org/10.1016/j.apenergy.2018.04.062).
    [15] S. P. Jiang, S. H. Chan, A review of anode materials development in solid oxide fuel cells, J. Mater. Sci. 39 (2004) 4405-4439
    (https://doi.org/10.1023/B:JMSC.0000034135.52164.6b).
    [16] G. DiGiuseppe, L. Sun, Electrochemical performance of a solid oxide fuel cell with an LSCF cathode under different oxygen concentrations, Int. J. Hydrog. Energy 36 (2011) 5076-5087
    (https://doi.org/10.1016/j.ijhydene.2011.01.017).
    [17] T. J. Huang, M. C. Huang, Temperature effect on electrochemical promotion of syngas cogeneration in direct-methane solid oxide fuel cells, J. Power Sources 175 (2008) 473-481
    (https://doi.org/10.1016/j.jpowsour.2007.09.061).
    [18] Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S. D. Li, Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane, Energy 113 (2016) 432-443
    (https://doi.org/10.1016/j.energy.2016.07.063).
    [19] T. Horita, K. Yamaji, T. Kato, H. Kishimoto, Y. Xiong, N. Sakai, M. E. Brito, H. Yokokawa, Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization, J. Power Sources 145 (2005) 133-138 (https://doi.org/10.1016/j.jpowsour.2004.12.075).
    [20] Y. Lyu, J. Xie, D. Wang, J. Wang, Review of cell performance in solid oxide fuel cells, J. Mater. Sci. 55 (2020) 7184-7207
    (https://doi.org/10.1007/s10853-020-04497-7).
    [21] H. Su, Y. H. Hu, Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels, Chem. Eng. J. 402 (2020) 126235
    (https://doi.org/10.1016/j.cej.2020.126235).
    [22] S. McIntosh, R. J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chem. Rev. 104 (2004) 4845-4866 (https://doi.org/10.1021/cr020725g).
    [23] E. D. Wachsman, K. T. Lee, Lowering the temperature of solid oxide fuel cells, Science 334 (2011) 935-939
    (https://www.science.org/doi/10.1126/science.1204090).
    [24] P. C. Wu, S. S. Shy, Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850℃, J. Power Sources 362 (2017) 105-114 (https://doi.org/10.1016/j.jpowsour.2017.07.030).
    [25] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013年6月。
    [26] 李秉霙,添加氨氣的合成氣固態氧化物燃料電池性能與穩定性實驗研究,碩士論文,國立中央大學,2021年1月。
    [27] 王稚元,加濕效應對加壓型甲烷固態氧化物燃料電池碳沉積影響,碩士論文,國立中央大學,2021年10月。
    [28] 蔡安傑,合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測,碩士論文,國立中央大學,2021年1月。
    [29] 呂育緯,熱循環、添加氫氣、加壓效應還原氮化鎳對平板氨氣SOFCs之效應,碩士論文,國立中央大學,2021年1月。
    [30] N. Q. Minh, Ceramic fuel cells, J. Am. Ceram. Soc. 76 (1993) 563-588 (https://doi.org/10.1111/j.1151-2916.1993.tb03645.x).
    [31] X. D. Zhou, L. R. Pederson, J. W. Templeton, J. W. Stevenson, Electrochemical performance and stability of the cathode for solid oxide fuel cells: I. cross validation of polarization measurements by impedance spectroscopy and current-potential sweep, J. Electrochem. Soc. 157 (2010) 220-227 (10.1149/1.3263903).
    [32] N. Biswas, D. Bhattacharya, M. Kumar, J. Mukhopadhyay, R. N. Basu, P. K. Das, Effect of oxygen diffusion constraints on the performance of planar solid oxide fuel cells for variable oxygen concentration, Ind. Eng. Chem. Res. 59 (2020) 18844-18856 (https://doi.org/10.1021/acs.iecr.0c00628).
    [33] H. B. Moussa, B. Zitouni, K. Oulmi, B. Mahmah, M. Belhamel, P. Mandin, Hydrogen consumption and power density in a co-flow planar SOFC, Int. J. Hydrog. Energy 34 (2009) 5022-5031
    (https://doi.org/10.1016/j.ijhydene.2008.12.034).
    [34] W. G. Bessler, S. Gewies, C. Willich, G. Schiller, K. A. Friedrich, Spatial distribution of electrochemical performance in a segmented SOFC: A combined modeling and experimental study, Fuel Cells 10 (2010) 411-418 (https://doi.org/10.1002/fuce.200900083).
    [35] J. Nielsen, A. Hagen, Y. L. Liu, Effect of cathode gas humidification on performance and durability of solid oxide fuel cells, Solid State Ion 181 (2010) 517-524 (https://doi.org/10.1016/j.ssi.2010.02.018).
    [36] F. Che, J. T. Gray, S. Ha, J. S. McEwen, Improving Ni catalysts using electric fields: A DFT and experimental study of the methane steam reforming reaction, ACS Catal. 7 (2017) 551-562
    (https://doi.org/10.1021/acscatal.6b02318).
    [37] J. Xu, C. M. Y. Yeung, J. Ni, F. Meunier, N. Acerbi, M. Fowles, S. C. Tsang, Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts, APPL CATAL A-GEN 345 (2008) 119-127 (https://doi.org/10.1016/j.apcata.2008.02.044).
    [38] J. Hanna, W. Y. Lee, Y. Shi, A. F. Ghoniem, Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels, Prog. Energy Combust. Sci. 40 (2014) 74-111
    (https://doi.org/10.1016/j.pecs.2013.10.001).
    [39] U. M. Damo, M. L. Ferrari, A. Turan, A. F. Massardo, Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy, Energy 168 (2019) 235-246
    (https://doi.org/10.1016/j.energy.2018.11.091).
    [40] T. M. Gür, Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas, Prog. Energy Combust. Sci. 54 (2016) 1-64
    (https://doi.org/10.1016/j.pecs.2015.10.004).
    [41] Y. Lin, Z. Zhan, J. Liu, S. A. Barnett, Direct operation of solid oxide fuel cells with methane fuel, Solid State Ion. 176 (2005) 1827-1835
    (https://doi.org/10.1016/j.ssi.2005.05.008).
    [42] J. Liu, S. A. Barnett, Operation of anode-supported solid oxide fuel cells on methane and natural gas, Solid State Ion. 158 (2003) 11-16
    (https://doi.org/10.1016/S0167-2738(02)00769-5).
    [43] D. Saebea, S. Authayanun, Y. Patcharavorachot, Performance analysis of direct steam reforming of methane in SOFC with SDC-based electrolyte, Energy Rep. 6 (2020) 391-396 (https://doi.org/10.1016/j.egyr.2019.08.078).
    [44] A. Ideris, E. Croiset, M. Pritzker, A. Amin, Direct-methane solid oxide fuel cell (SOFC) with Ni-SDC anode-supported cell, Int. J. Hydrog. Energy 42 (2017) 23118-23129 (https://doi.org/10.1016/j.ijhydene.2017.07.117).
    [45] J. Ni, J. Zhao, L. Chen, J. Lin, S. Kawi, Lewis acid sites stabilized nickel catalysts for dry (CO2) reforming of methane, ChemCatChem 8 (2016) 3732-3739 (https://doi.org/10.1002/cctc.201601002).
    [46] H. Zhang, W. Liu, Y. Wang, J. Wang, J. Yang, T. Liang, C. Yin, B. Chi, L. Jia, W. Guan, Performance and long-term durability of direct-methane flat-tube solid oxide fuel cells with symmetric double-sided cathodes, Int. J. Hydrog. Energy 44 (2019) 28947-28957
    (https://doi.org/10.1016/j.ijhydene.2019.09.126).
    [47] L. Fan, L. V. Biert, A. T. Thattai, A. H. M. Verkooijen, P. V. Aravind, Study of methane steam reforming kinetics in operating solid oxide fuel cells: Influence of current density, Int. J. Hydrog. Energy 40 (2015) 5150-5159 (https://doi.org/10.1016/j.ijhydene.2015.02.096).
    [48] E. P. Murray, T. Tsai, S. A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651 (https://doi.org/10.1038/23220).
    [49] W. Liu, J. Sang, Y. Wang, X. Chang, L. Lu, J. Wang, X. Zhou, Q. Zhai, W. Guan, S. C. Singhal, Durability of direct-internally reformed simulated coke oven gas in an anode-supported planar solid oxide fuel cell based on double-sided cathodes, J. Power Sources 31 (2020) 228284
    (https://doi.org/10.1016/j.jpowsour.2020.228284).
    [50] W. Wang, R. Ran, C. Su, Y. Guo, D. Farrusseng, Z. Shao, Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes, J. Power Sources 240 (2013) 232-240
    (https://doi.org/10.1016/j.jpowsour.2013.04.014).
    [51] J. Xiao, Y. Xie, J. Liu, M. Liu, Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels, J. Power Sources 268 (2014) 508-516 (https://doi.org/10.1016/j.jpowsour.2014.06.082).
    [52] J. W. Fergus, Electrolytes for solid oxide fuel cells, J. Power Sources 162 (2006) 30-40 (https://doi.org/10.1016/j.jpowsour.2006.06.062).
    [53] A. J. Jacobson, Materials for solid oxide fuel cells, Chem. Mater. 22 (2010) 660-674 (https://doi.org/10.1021/cm902640j).
    [54] M. S. Khan, S. B. Lee, R. H. Song, J. W. Lee, T. H. Lim, S. J. Park, Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: A review, Ceram. Int. 42 (2016) 35-48
    (https://doi.org/10.1016/j.ceramint.2015.09.006).
    [55] B. S. Prakash, S. S. Kumar, S. T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renew. Sust. Energ. Rev. 36 (2014) 149-179 (https://doi.org/10.1016/j.rser.2014.04.043).
    [56] S. McIntosh, R. J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chem. Rev. 104 (2004) 4845-4866 (https://doi.org/10.1021/cr020725g).
    [57] M. Singh, D. Zappa, E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrog. Energy 46 (2021) 27643-27674 (https://doi.org/10.1016/j.ijhydene.2021.06.020).
    [58] H. Zhu, R. J. Kee, A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies, J. Power Sources 117 (2003) 61-74 (https://doi.org/10.1016/S0378-7753(03)00358-6).
    [59] Q. A. Huang, R. Hui, B. Wang, J. Zhang, A review of AC impedance modeling and validation in SOFC diagnosis, Electrochim. Acta 52 (2007) 8144-8164 (https://doi.org/10.1016/j.electacta.2007.05.071).
    [60] B. A. Braz, C. S. Moreira, V. B. Oliveira, A. M. F. R. Pinto, Electrochemical impedance spectroscopy as a diagnostic tool for passive direct methanol fuel cells, Energy Rep. 8 (2022) 7964-7975
    (https://doi.org/10.1016/j.egyr.2022.06.045).

    QR CODE
    :::