跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡彥辰
Yen-Chen Tsai
論文名稱: 鋼筋混凝土構架機率式地震損失評估
Probabilistic Seismic Loss Assessment of Reinforced Concrete Frame Structures
指導教授: 陳鵬宇
Peng-Yu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 116
中文關鍵詞: 機率式地震風險評估FEMA P-58鋼筋混凝土構架PELICUN
外文關鍵詞: Probabilistic Earthquake Risk Assessment, FEMA P-58, Reinforced Concrete Structures, PELICUN
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於環太平洋地震帶,地震頻繁且強烈,對鋼筋混凝土建築的結構安全構成重大挑戰。傳統耐震風險評估方法(如ATC-40、FEMA 273)多依賴靜力側推分析(Pushover Analysis),但未能充分考慮地震動的不確定性,限制了損傷預測與修復評估的準確性。相比之下,機率式地震風險評估方法(如FEMA P-58)透過易損性曲線量化損傷機率,可依此量化損失金錢與修繕時間,提供較完整的評估架構。然而,此類方法在不同建築類型的適用性及計算效率方面仍面臨挑戰,難以實現大規模鋼筋混凝土建築群的快速風險分析。
    本研究基於李坤展(2022)提出的「數據驅動之鋼筋混凝土構架機率式地震風險評估」架構,將其改良成可適用於具有不同樓高與柱斷面之筋混凝土構架,並以國震中心振動台試驗建立ETABS模型以驗證其有效性。在此之上,本研究進一步建立一套自動化地震損失評估系統,整合國際上最先進之開源損失估算架構PELICUN,提供不具工程背景之使用者易於瞭解的金錢損失估計。
    本研究成果具有自動化建模流程與模組化設計,可提供快速的結構風險評估,適用於防災規劃與韌性提升策略。期望本研究成果能成為政府及工程界推動都市防震與災後恢復的重要參考,進一步提升台灣建築物的韌性與公共安全。


    Taiwan, situated within the seismically active Pacific Ring of Fire, encounters considerable challenges in maintaining the structural integrity of reinforced concrete (RC) buildings. Conventional seismic risk assessment methodologies, such as ATC-40 and FEMA 273, predominantly utilize static pushover analysis and frequently overlook seismic uncertainties, thereby constraining their efficacy in accurately forecasting damage and repair expenditures. In contrast, probabilistic methodologies, exemplified by FEMA P-58, employ vulnerability curves to estimate the probabilities of damage, financial losses, and repair timelines. Nonetheless, the implementation of these approaches is often hindered by substantial computational requirements and limitations in their applicability across various building typologies.
    This research expands upon the data-driven probabilistic seismic risk assessment framework established by Li (2022) to include RC frames of differing heights and column dimensions. An ETABS model, which has been validated through shaking table test data from the National Center for Research on Earthquake Engineering, is utilized to ensure the reliability of the model. Additionally, an automated assessment system that integrates the PELICUN loss estimation framework is developed to facilitate accessible seismic loss evaluations for individuals without engineering expertise. The proposed system enhances the efficiency of risk assessments through automated modeling and a modular design, thereby providing practical benefits for disaster preparedness, resilience planning, and post-earthquake recovery. The findings of this study are intended to inform policy and engineering practices aimed at improving seismic resilience and public safety in Taiwan.

    一、 緒論 1 1-1 研究動機與目的 1 1-2 文獻探討 3 1-2-1 鋼筋混凝土房屋模型 3 1-2-2 現有地震韌性評估架構 8 1-2-3 總結 9 1-3 論文架構 9 二、 OpenSees數據驅動IMK模型簡介與ETABS驗證 11 2-1 OpenSees數據驅動IMK模型簡介 11 2-1-1 OpenSees與集中塑性模型 12 2-1-2 IMK 模型 12 2-1-3 李坤展(2022)數據驅動建模流程 17 2-1-4 本研究延伸之數據驅動模組與應用架構 19 2-2 國震中心三層樓RC試體構架振動台實驗簡介 25 2-3 ETABS模型建置與所提模型驗證 27 2-3-1 模型建構原則與參數設定比較 28 2-3-2 地震輸入與結果輸出設定 34 2-3-3 彈性階段之比較分析 35 2-3-4 非線性階段之行為差異 36 2-3-5 結果比較 38 2-4 小結 40 三、 現有機率式地震風險評估系統簡介與應用 41 3-1 PELICUN軟體簡介與功能概述 41 3-1-1 PELICUN的資料庫與主要功能 42 3-1-2 PELICUN在房屋地震損失評估中的應用優勢分析 45 3-2 PELICUN與PACT的比較 46 3-2-1 案例結構 46 3-2-2 PELICUN與PACT應用結果及數據比較分析 47 3-2-3 探討PELICUN軟體優勢與不足 51 3-3 PELICUN與所提程式的整合流程 52 3-3-1 技術挑戰及自動化整合流程 52 3-4 小結 56 四、 鋼筋混凝土構架機率式地震損失評估範例 57 4-1 鋼筋混凝土構架建模與非線性動力分析 57 4-1-1 OpenSees 模型建置 57 4-1-2 地震歷時輸入與模擬流程 57 4-2 PELICUN系統整合與分析流程 58 4-3 案例結果討論與系統優勢評析 62 4-4 收斂性分析 65 4-5 敏感度分析 66 4-5-1 DBE結果分析 70 4-5-2 MCE結果分析 77 五、 結論與未來展望 83 5-1 結論 83 5-2 未來展望 84 參考文獻 86 附錄一 90 附錄二 95

    [1] Applied Technology Council. (1996). Seismic evaluation and retrofit of concrete buildings (Report No. SSC 96-01). Applied Technology Council.
    [2] Federal Emergency Management Agency. (1997). NEHRP guidelines for the seismic rehabilitation of buildings (FEMA 273). Washington, D.C.: Federal Emergency Management Agency.
    [3] 李坤展 (2022)。數據驅動之鋼筋混凝土構架機率式地震風險評估 [Data-driven probabilistic seismic risk assessment of reinforced concrete frames] (碩士論文)。國立中央大學。
    [4] Papanikolaou, V. K., & Elnashai, A. S. (2005). Evaluation of conventional and adaptive pushover analysis I: Methodology. Journal of Earthquake Engineering, 9(6), 923-941.
    [5] 邱聰智、蕭輔沛、鍾立來、翁建煌、李其航、劉建均、薛強、何郁姍、陳幸均、楊智斌、翁樸文、沈文成、涂耀賢、楊耀昇、李翼安、葉勇凱、黃世建(2018)。臺灣結構耐震評估側推分析法(TEASPA V3.1)(NCREE-18-015)。國家地震工程研究中心。
    [6] Deierlein, G. G., Krawinkler, H., & Cornell, C. A. (2003). A framework for performance-based earthquake engineering. In Proceedings of the 2003 Pacific Conference on Earthquake Engineering (pp. 1-8).
    [7] Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583-1606.
    [8] Porter, K. A. (2003, July). An overview of PEER’s performance-based earthquake engineering methodology. In Proceedings of the Ninth International Conference on Applications of Statistics and Probability in Civil Engineering (pp. 1–8).
    [9] Moehle, J., & Deierlein, G. G. (2004, August). A framework methodology for performance-based earthquake engineering. In Proceedings of the 13th World Conference on Earthquake Engineering (Vol. 679, p. 12). WCEE, Vancouver.
    [10] Hamburger, R. O., & Moehle, J. P. (2010). Performance-based seismic assessment of buildings using the FEMA P-58 methodology. In Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering.
    [11] Applied Technology Council, & National Earthquake Hazards Reduction Program (US). (2012). Seismic performance assessment of buildings. Federal Emergency Management Agency.
    [12] McKenna, F. (2011). OpenSees: a framework for earthquake engineering simulation. Computing in Science & Engineering, 13(4), 58-66.
    [13] 翁元洛、蕭輔沛、周中哲、楊元森、楊卓諭、王仁佐、郭俊翔、趙書賢、賴晉達、張容銘、林沛暘、吳文華、林子剛、葉勇凱、周德光、林瑞良、翁樸文、沈文成(2019)。三層樓RC試體構架振動台實驗、量測、監測識別與非線性動力分析模擬 (NCREE-2019-004F)。國家地震工程研究中心。
    [14] Lin, J. L., et al. (2020). An advanced model for seismic performance evaluation of RC structures. Journal of Structural Engineering, 146(5), 1-15.
    [15] 林佳正 (2011)。校舍結構耐震之研究 [A study on the earthquake resistance for school buildings] (碩士論文)。朝陽科技大學。
    [16] 賴志瑜 (2012)。構架側推分析行為探討 [Behavior of pushover analysis of frame] (碩士論文)。國立交通大學。
    [17] Applied Technology Council. (2012). Seismic performance assessment of buildings, Volume 3: Performance Assessment Calculation Tool (PACT) (FEMA P-58-3). Federal Emergency Management Agency.
    [18] 謝瑋桓(2017)。中高樓建築機率式耐震與倒塌風險評估之研究 [Probabilistic assessment of seismic performance and collapse risk for mid-rise buildings] (碩士論文)。國立成功大學。
    [19] NHERI SimCenter. (2023). PELICUN: A computational framework for probabilistic loss estimation. Natural Hazards Engineering Research Infrastructure, University of California, Berkeley.
    [20] Zsarnóczay, A., & Deierlein, G. G. (2021). PELICUN—A computational framework for multi-hazard assessment of structural and infrastructure systems. Earthquake Spectra, 37(3), 1902-1924.
    [21] Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake engineering & structural dynamics, 34(12), 1489-1511.
    [22] Warburton, G. (1995). Dynamics of structures, by Ray W. Clough and Joseph Penzien, McGraw‐Hill, New York, 1993. No. of pages: 738. ISBN 0‐07‐011394‐7. In: Wiley Online Library.
    [23] Lignos, D. G., & Krawinkler, H. (2013). Development and utilization of structural component databases for performance-based earthquake engineering. Journal of Structural Engineering, 139(8), 1382-1394.
    [24] Federal Emergency Management Agency (FEMA) (2020). HAZUS 4.2 SP3 Earthquake Model—Technical Manual.
    [25] American Concrete Institute. (2019). Building code requirements for structural concrete (ACI 318-19) and commentary (ACI 318R-19).
    [26] American Society of Civil Engineers. (2017). Seismic evaluation and retrofit of existing buildings (ASCE/SEI 41-17).
    [27] ASCE 41-06, Seismic Rehabilitation of Existing Buildings by American Society of Civil Engineers, ASCE, 2006.
    [28] 鍾立來、葉勇凱、簡文郁、蕭輔沛、沈文成、邱聰智、周德光、趙宜峰、楊耀昇、涂耀賢、柴駿甫、黃世建、孫啟祥(2009)。校舍結構耐震評估與補強技術手冊 第二版(NCREE-09-023)。國家地震工程研究中心。
    [29] FEMA. (2024). HAZUS earthquake model technical manual version 6.1. Federal Emergency Management Agency. https://www.fema.gov
    [30] Autodesk. (2025, February 12). How much does it cost to build a house in 2025? https://www.autodesk.com/blogs/construction/how-much-does-it-cost-to-build-a-house-in-2025/#dropdown
    [31] 李宗霖 (2025)。城市規模之機率式地震風險評估開發與應用 [Development and Application of Region-Scale Probabilistic Seismic Risk Assessment] (碩士論文)。國立中央大學。

    QR CODE
    :::