| 研究生: |
羅振銘 Zhen-Ming Luo |
|---|---|
| 論文名稱: |
應用於高效率體異質介面反式錫鈣鈦礦太陽能電池之離子性富勒烯衍生物 Ionic Fullerene Derivatives for High Performance Bulk Heterojunction Tin Perovskite Solar Cell |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 錫鈣鈦礦 、太陽能電池 |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
錫鈣鈦礦太陽能電池(Tin Perovskite solar cells, TPSC)由於其吸收層的毒性低、能隙小(Eg 1.41 eV)與吸收係數高等優點,且光伏表現佳而受重視。然而,錫鈣鈦礦(Tin Perovskite, T-Psk)層中的Sn2+容易與空氣中的水氣及氧氣反應氧化成Sn4+,且T-Psk膜的結晶速度快,不易形成緻密的膜,導致所組裝之元件的效率及長時間穩定性差。本研究探討於FA0.98EDA0.01SnI3前驅溶液中添加三種弱酸性離子性富勒烯衍生物C60-(RT2+)6(12X-) (X = Cl, Br, I) (簡稱6-X (X = Cl, Br, I))製備體異質介面的T-Psk膜(稱為6-X@FA0.98EDA0.01SnI3膜),其中以6-Br@FA0.98EDA0.01SnI3膜作為吸收層所組裝之元件的光電轉換效率達10.09%比以FA0.98EDA0.01SnI3膜作為吸收層所組裝之元件的光電轉換效率(8.21%)高約20%。在未封裝的條件下,以6-Br@FA0.98EDA0.01SnI3膜作為吸收層的TPSC元件放置在手套箱中2520小時後光電轉換效率仍可維持原來效率的84%;而以FA0.98EDA0.01SnI3膜作為吸收層的TPSC元件之光電轉換效率僅剩原來效率的53%。添加6-Br可填補T-Psk膜的晶界,且有部份的Br-進入T-Psk膜的晶格中調整T-Psk層的前置軌域能階,減少載子傳遞至載子傳遞層所造成的能量損失,使所組裝之元件的Voc值由0.59 V增加至0.62 V。此外,添加6-Br也能延緩T-Psk膜的結晶速度,使所製備之T-Psk膜的顆粒大、平整、緻密且結晶度高。而添加6-Br可增加T-Psk前驅溶液的酸性,因此T-Psk前驅溶液中的Sn2+不易氧化成Sn4+,故6-Br@FA0.98EDA0.01SnI3膜的Sn2+/Sn4+比例比FA0.98EDA0.01SnI3膜高。
Tin Perovskite solar cells (TPSC) are the topic under extensive studies due to the absorber has low toxicity, small energy gap (Eg 1.41 eV) and high absorption coefficient as well as the cell has good photovoltaic performance. However, Sn2+ in the Tin Perovskite (T-Psk) easily reacts with moisture and oxygen in the air to be oxidized to Sn4+ easily as well as the crystallization rate of the T-Psk film is very fast thus it is difficult to form a dense and smooth T-Psk film, resulting in poor efficiency and long-term stability of the device. This study explores the effect of adding three weakly acidic ionic fullerene derivatives C60-(RT2+)6(12X-) (X = Cl, Br, I) (named 6-X (X = Cl, Br, I)) in T-Psk to prepare bulk-heterojunction film (named 6-X@FA0.98EDA0.01SnI3 film). The power conversion efficiency (PCE) of the cell based on 6-Br@FA0.98EDA0.01SnI3 film achieves the highest of 10.09% which is about 20% higher than the that (8.21%) of the device using FA0.98EDA0.01SnI3 film as the absorption layer. Without encapsulation, TPSC with 6-Br@FA0.98EDA0.01SnI3 as the absorber maintains 84% of the initial efficiency when it was placed in the glove box for 2520 hours. While the PCE of the TPSC with FA0.98EDA0.01SnI3 absorber lost 47% of the original efficiency. 6-Br can fill the grain boundaries of the T-Psk film, and some Br- ions can enter the lattice of the T-Psk film to adjust to energy level to reduce the energy loss caused by the transfer of carriers to the carrier transport layer. As a result the Voc of the device increased from 0.59 V to 0.62 V. In addition, the addition of 6-Br can also slow the crystallization of the T-Psk film, so that 6-Br@FA0.98EDA0.01SnI3 film has large grain size, flat, dense and high crystallinity. 6-Br can also increase the acidity of the T-Psk precursor solution to stabilize Sn2+. Therefore, the Sn2+/Sn4+ ratio of the 6-Br@FA0.98EDA0.01SnI3 film is higher than that of FA0.98EDA0.01SnI3 film.
[1] https://www.energytrend.com.tw/research/20181203-14312898.html?fbclid=IwAR0770c5wf_B6Z5ZtkecXNjsSrkyeZwd93lwiEAd_uH4WY3bei7IqWWOjX4
[2] http://en.wikipedia.org/wiki/Gustav_Rose
[3] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng and Jinsong Huang “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv., 2019, 5, 8925-8934.
[4] Weiqiang Liao, Dewei Zhao, Yue Yu, Corey R. Grice, Changlei Wang, Alexander J. Cimaroli, Philip Schulz, Weiwei Meng, Kai Zhu, Ren-Gen Xiong and Yanfa Yan “Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%”, Adv. Mater., 2016, 28, 9333-9340.
[5] Efat Jokar, Cheng-Hsun Chien, Amir Fathi, Mohammad Rameez, Chang-Yu Hao and Eric Wei-Guang Diau “Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells”, Energy Environ. Sci., 2018, 11, 2353-2362.
[6] Zonglong Zhu, Chu-Chen Chueh, Nan Li, Cheng-yi Mao, and Alex K.-Y. Jen “Realizing Efficient Lead-free Formamidium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route”, Adv. Mater., 2017, 30, 1703800.
[7] Efat Jokar, Cheng-Hsun Chien, Cheng-Min Tsai, Amir Fathi, and Eric Wei-Guang Diau “Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%”, Adv. Mater., 2018, 31, 1804835.
[8] Gwisu Kim, Hanul Min, Kyoung Su Lee, Do Yoon Lee, So Me Yoon and Sang Il Seok “Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells”, Science, 2020, 6512, 108-112.
[9] Chien-Hung Chiang and Chun-Guey Wu “A method to prepare highly oriented MAPbI3 crystallites for high efficiency perovskite solar cell to achieve 86% fill factor”, ACS Nano, 2018, 12, 10355-10364.
[10] Yan Li, Bin Ding, Qian-Qian Chu, Guan-JunYang, Mingkui Wang, Chang-Xin Li and Chang-Jiu Li “Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates”, Sci. Rep., 2017 ,7, 46141-46151.
[11] https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
[12] Cuili Gai, Jigang Wang, Yongsheng Wang and Junming Li “The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance”, Energies, 2020, 13, 2-26.
[13] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang and Mercouri G. Kanatzidis “Lead-free solid-state organic–inorganic halide perovskite solar cells”, Nature Photon., 2014, 8, 489-494.
[14] Mulmudi Hemant Kumar , Sabba Dharani , Wei Lin Leong , Pablo P. Boix , Rajiv Ramanujam Prabhakar , Tom Baikie , Chen Shi , Hong Ding , Ramamoorthy Ramesh , Mark Asta , Michael Gra¨tzel , Subodh G. Mhaisalkar and Nripan Mathews “Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation”, Adv. Mater., 2014, 26, 7122–7127.
[15] Kohei Nishimura, Muhammad Akmal Kamarudin, Daisuke Hirotani, Kengo Hamada, Qing Shen, Satoshi Iikubo, Takashi Minemoto, Kenji Yoshino and Shuzi Hayase “Lead-free tin-halide perovskite solar cells with 13% efficiency”, Nano Energy, 2020, 74, 104858.
[16] Chien-Hung Chiang and Chun-Guey Wu “Bulk heterojunction perovskite–PCBM solar cells with high fill factor”, Nature Photonics, 2016, 10, 196-200.
[17] Chong Liu, Wenzhe Li, Hongliang Li, Cuiling Zhang, Jiandong Fan and Yaohua Mai “C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency”, Nanoscale, 2017, 9, 13967-13975.
[18] Cong Liu, Jin Tu, Xiaotian Hu, Zengqi Huang, Xiangchuan Meng, Jia Yang, Xiaopeng Duan, Licheng Tan, Zhen Li, and Yiwang Chen “Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability”, Adv. Funct. Mater., 2019, 29, 1808059.
[19] Seon Joo Lee, Seong Sik Shin, Young Chan Kim, Dasom Kim, Tae Kyu Ahn, Jun Hong Noh, Jangwon Seo and Sang Il Seok “Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex”, J. Am. Chem. Soc., 2016, 138, 3974-3977.
[20] Feidan Gu, Senyun Ye, Ziran Zhao, Haixia Rao, Zhiwei Liu, Zuqiang Bian and Chunhui Huang “Improving Performance of Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification”, Sol. RRL, 2018, 2, 136-145.
[21] Zhuojia Lin, Cong Liu, Gengling Liu, Jia Yang, Xiaopeng Duan, Licheng Tan and Yiwang Chen “Efficient Inverted Tin-based Perovskite Solar Cells via Bidentate Coordination Effect of 8-Hydroxyquinoline”, Chem. Commun., 2020, 56, 4007-4010.
[22] Xiangyue Meng, Tianhao Wu, Xiao Liu, Xin He, Takeshi Noda, Yanbo Wang, Hiroshi Segawa, and Liyuan Han “Highly Reproducible and Efficient FASnI3 Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent”, J. Phys. Chem. Lett., 2020, 11, 2965-2971.
[23] Md. Emrul Kayesh, Towhid Hossain Chowdhury, Kiyoto Matsuishi, Ryuji Kaneko, Said Kazaoui, Jae-Joon Lee, Takeshi Noda and Ashraful Islam “Enhanced Photovoltaic Performance of FASnI3 Based Perovskite Solar Cells with Hydrazinium Chloride (N2H5Cl) Co-Additive”, ACS Energy Lett., 2018, 3, 1584-1589.
[24] Chengbo Wang, Feidan Gu, Ziran Zhao, Haixia Rao, Yaming Qiu, Zelun Cai, Ge Zhan, Xiaoyue Li, Boxun Sun, Xiao Yu, Boqin Zhao, Zhiwei Liu, Zuqiang Bian, and Chunhui Huang “Self-Repairing Tin-Based Perovskite Solar Cells with a Breakthrough Efficiency Over 11%”, Adv. Mater., 2020, 32, 1907623.
[25] Bin-Bin Yu, Min Liao, Yudong Zhu, Xusheng Zhang, Zheng Du, Zhixin Jin, Di Liu, Yiyu Wang, Teresa Gatti, Oleg Ageev, and Zhubing He “Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead-Free Perovskite Solar Cells”, Adv. Funct. Mater., 2020, 30, 2002230.
[26] Jin Huang, Minqiang Wang, Lei Ding, Jianping Deng and Xi Yao “Efficiency enhancement of the MAPbI3-xClx based perovskite solar cell by a two-step annealing procedure”, Semicond. Sci. Technol., 2016, 31, 25009-25015.
[27] Ke Chen, Pan Wu, Wenqiang Yang, Rui Su, Deying Luo, Xiaoyu Yang, Yongguang Tu, Rui Zhu and Qihuang Gong “Low-dimensional Perovskite Interlayer for Highly Efficient Lead-free Formamidinium Tin Iodide Perovskite Solar Cells”, Nano Energy, 2018, 49, 411-418.
[28] Xin He, Tianhao Wu, Xiao Liu, Yanbo Wang, Xiangyue Meng, Jihuai Wu, Takeshi Noda, Xudong Yang, Yutaka Moritomo, Hiroshi Segawa, and Liyuan Han “Highly Efficient Tin Perovskite Solar Cells Achieved Under Wide Oxygen Region”, J. Mater. Chem. A, 2020, 8, 2760-2768.
[29] Ben Ma, Junwen Chen, Minghao Wang, Xin Xu, Jie Qian, Yao Lu, Wenzhu Zhang, Pengfei, Xia, Minchao Qin, Wenjing Zhu, Liuquan Zhang, Shufen Chen, Xinhui Lu, and Wei Huang “Passivating Charged Defects with 1,6-Hexamethylenediamine
to Realize Efficient and Stable Tin-Based Perovskite Solar Cells”, J. Phys. Chem. C, 2020, 124, 16289-16299.
[30] 陳宇豐, “離子性富勒烯衍生物的合成與性質探討”, 國立中央大學, 碩士論文, 2020.
[31] Syed A. Moiz, Iqbal. A. Khan, Waheed A. Younis and Khasan S. Karimov “Space Charge–Limited Current Model for Polymers”, Conducting Polymers, 2016, chapter 5, 91-117.
[32] Guiying Xu, Pengqing Bi, Shuhui Wang, Rongming Xue, Jingwen Zhang, Haiyang Chen, Weijie Chen, Xiaotao Hao, Yaowen Li and Yongfang Li “Integrating Ultrathin Bulk-Heterojunction Organic Semiconductor Intermediary for High-Performance Low-Bandgap Perovskite Solar Cells with Low Energy Loss”, Adv. Funct. Mater., 2018, 28, 1804427.
[33] Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, Jinsong Huang “Electron-hole diffusion lengths > 175 mm in solution-grown CH3NH3PbI3 single crystals”, Science, 2015, 347, 967-970.