跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅于豪
Yu-Hau Lou
論文名稱: 模糊隨機系統極點配置及狀態限制之設計
Fuzzy Control of Stochastic Systems with Pole Placement and Variance Constraints
指導教授: 莊堯棠
Yau-Tarng Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 極點配置協方差模糊系統
外文關鍵詞: pole placement, covariance, Fuzzy systems
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模糊系統在近年來受到廣泛的討論,本論文中,主要是針對連續模糊隨機系統做分析與研究,在系統中結合協方差控制理論及極點限制進行狀態變數限制及閉迴路極點配置的處理,且為了更滿足系統的實用性,我們加入考慮參數不確定性,並經由線性矩陣不等式(LMI)進行參數不確定性的處理,最後我們提供了一個設計滿足上述情況的控制器的方法。
    由於控制器設計並非唯一,最後我們以控制力為考慮要素,提供一個方法進行最小控制力之控制器設計,再者,我們將利用幾個例子來說明本篇論文的有效性。


    This thesis concerns the design problem of fuzzy controllers which guarantee the closed-loop poles within a specified disc and steady-state variance to be less than a set of given upper bounds for continuous T-S fuzzy stochastic systems with parameter uncertainties. Using the linear matrix inequality (LMI) approach, the existence conditions of such T-S fuzzy controllers are derived, but the T-S fuzzy controllers are not unique. A solution to the minimum-effect guaranteed-performance design problem is presented in the sense that the required control effort is minimized subject to performance constraints.

    摘要……………………………………………………………………Ⅰ 致謝辭…………………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 第一章 緒論……………………………………………………………1 第二章 連續模糊隨機系統滿足極點及狀態變數限制經由線性矩陣不 等式之控制器設計……………………………………………2 第三章 連續模糊隨機系統滿足極點及狀態變數限制之強健性分析及 經由線性矩陣不等式之控制器設計…………………………3 第四章 最小控制力之控制器設計……………………………………4 第五章 結論……………………………………………………………5 Contents……………………………………………………………Ⅱ List of Figures……………………………………………………………Ⅳ List of Tables……………………………………………………………Ⅵ CHAPTER 1 Introduction……………………………………………………………1 1.1 Background and the Motivation……………………………………………1 1.2 Review of Previous Works………………………………………………3 1.3 Organization of this thesis ……………………………………………4 CHAPTER 2 Design Controllers for Continuous T-S Fuzzy Stochastic Systems with Pole Placement and Variance Constraints……………………………………………………………6 2.1 Introduction……………………………………………………………6 2.2 Continuous T-S Fuzzy Stochastic Systems and Its Stability Conditions ……………………………………………………………6 2.3 System Analysis and Design of Controller…………………………8 2.4 An Illustrated Example ……………………………………………………………12 2.5 Conclusions……………………………………………………………17 CHAPTER 3 Analysis and Design Continuous Robust T-S Fuzzy Stochastic Systems with Pole Placement and Variance Constraints……………18 3.1 Introduction……………………………………………………………18 3.2 Stability Conditions for Continuous Robust T-S Fuzzy Stochastic Systems……………………………………………………………18 3.3 PDC Fuzzy Controller Design.................................................... 21 3.4 Design of Fuzzy Controller Gain ............................................... 25 3.5 An Illustrated Example............................................................... 28 3.6 Conclusions ................................................................................ 32 CHAPTER 4 Design of the Minimum-effort Variance Controller..................................................................... 33 4.1 Introduction................................................................................ 33 4.2 The Minimum-effort Variance Control...................................... 33 4.3 Design of the Minimum Energy Controllers ............................. 34 4.4 An Illustrated Example .............................................................. 35 4.5 Conclusions................................................................................ 40 CHAPTER 5 Conclusions ................................................................. 41 References.............................................................................................. 42 Publication ............................................................................................. 46

    [1] A. F. Hotz and R. E. Skelton,“A Covariance Control Theory,”Proc. 24th IEEE Conf. On Decision and Control, Fort Lauderdale, FL, pp. 552-557, Dec. 1985.
    [2] A. F. Hotz and R. E. Skelton, “Covariance Control Theory,” Int. J. Control, Vol. 46, No. 1, pp. 13-32, 1987.
    [3] C. W. Ramos and L. D. Peres, “An LMI Condition for Robust Stability of Uncertain Continuous-Time Linear Systems,” IEEE Trans. Auto. Control, Vol. 47, No. 4, pp. 675-678, 2002.
    [4] C. Hsieh and R. E. Skelton, “All Covariance Controllers for Linear Discrete-Time Systems,” IEEE Trans. Auto. Control, Vol. 35, pp. 944-948, 1990.
    [5] C. P. Huang and Y. T. Juang, “A Projection to Stability Analysis and Design of Fuzzy Systems,” IEEE Trans. Syst., Man Cybern., Vol. 33, No. 6, pp. 766-771, 2003.
    [6] E. Kim and H. Lee, “New Approaches to Relaxed Quadratic Stability Condition of Fuzzy Control Systems,” IEEE Trans. Syst., Vol. 8, No. 5, pp. 523-534, 2000.
    [7] E. G. Collins, Jr. and R. E. Skelton, “A Theory of State Covariance Assignment for Discrete Systems,” IEEE Trans. Auto. Control, Vol. AC-32, No.1, pp. 35-41, 1987.
    [8] G. Garcia and J. Bernussou, “Pole Assignment for Uncertain Systems in a Specified Disk by State Feedback,” IEEE Trans. Auto. Control, Vol. 40, pp.184-190, 1995.
    [9] H. O. Wang, K. Tanaka and M. F. Griffin, “An Approach to Fuzzy Control of Nonlinear system: Stability and Design Issues,” IEEE Trans. Fuzzy Systems, Vol. 4, No.1, pp. 14-23, 1996.
    [10] H. O. Wang, K. Tanaka and M. Griffin, “Parallel Distributed Compensation of Nonlinear System by Takagi-Sugeno Fuzzy Model,” 1995 IEEE Inter. Conf. Fuzzy Systems, pp. 531-538, 1995.
    [11] H. Y. Chung and W. J. Chang, “Extension of the Covariance Control Principle to Nonlinear Stochastic Systems,” IEE Proc. Part D, Control Theory and Applications, Vol.141, No. 2, pp. 93-98, 1994.
    [12] J. Joh, R. Langari, E.T. Jeung and W. J. Chung, “A New Design Method for Continuous Takagi-Sugeno Fuzzy Controller with Pole Placement Constraints: An LMI Approach,” IEEE Int. Conf. pp. 2969-2974, 1997.
    [13] K. Tanaka and M.Sugeno, “Stability Analysis and Design of Fuzzy Control System,”Fuzzy Sets and Systems, Vol. 45, No. 2, pp. 135-156, 1992.
    [14] K. Tanaka and H. O. Wang, “Fuzzy Control System Design and Analysis – A Linear Matrix Inequality Approach,” John Wiliey & Son Inc., 2001.
    [15] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, Vol. 6, pp. 250-265, 1998.
    [16] K. Furuta and S. B. Kim, “Pole Assignment in a Specified Disk,” IEEE Trans. Auto. Control, Vol. 32, pp. 423-427, 1987.
    [17] L. Yu, “Robust Control of Linear Uncertain Systems with Regional Pole and Variance Constrains,” Int. J. Syst. Sci., Vol. 31, pp. 367-371, 2000.
    [18] M. K. Grigoriadis and R. E. Skelton, “Minimum-Energy Covariance Controllers,” Auto. Vol. 33, pp. 569-578, 1997.
    [19] M. Chilali, P. Gahinet and P. Apkarian, “Robust Pole Placement in LMI Regions,” IEEE Trans. Auto. Control, Vol.44, pp. 2257-2270, 1999.
    [20] M. Chilali and P. Gahinet, “ Design with Pole Placement Constraints: An LMI Approach,” IEEE Trans. Auto. Control, Vol. 41, pp. 358-367, 1996.
    [21] R. E. Skelton and M. Ikeda, “Covariance Controllers for Linear Continuous Time Systems,” Int. J. Control, Vol.49, pp. 1773-1785, 1989.
    [22] R. E. Skelton and T. Iwasaki, “Lyapunov and Covariance Controllers,” Int. J. Control, Vol. 57, pp. 519-536, 1993.
    [23] R. E. Skelton, H. J. Xu and K. Yasuda, “On the Freedom in Covariance Control,” Int. J. Control, Vol. 59, pp. 1567-1583, 1994.
    [24] S. Xu, P. V. Dooren, R. Stefan and J. Lam, “Robust Stability and Stabilization for Singular Systems with State Delay and Parameter Uncertainty,” IEEE Trans. Auto. Control, Vol. 47, No.7, pp.1122 -1128, 2002.
    [25] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,”IEEE Trans. Syst., Man Cybern., Vol. SMC-15, No. 1, pp. 116-132, 1985.
    [26] T. Tanaka and M. San, “A Robust Stabilization Problem of Fuzzy Control Systems and It Application to Backing up Control of a Truck-Trailer,”IEEE Trans. Fuzzy Systems, Vol. 2, No. 3, pp. 119-134, 1994.
    [27] W. J. Chang and H. Y. Chung, “Upper Bound Covariance Control of Discrete Perturbed Systems,” Syst. Cont. Lett., Vol.19, No. 6, pp. 493-498, 1992.
    [28] W. J. Chang and S. M. Wu, “Upper Bound Covariance for Continuous Fuzzy Stochastic Systems with Structured Perturbations,” IEEE Int. Conf. Taipei, Taiwan, R.O.C ., 2002.
    [29] W. M. Haddad and D. S. Bernstein, “Controller Design with Regional Pole Constrains,” IEEE Trans. Auto. Control, Vol. 37, pp.54-69, 1992.
    [30] Y. Y. Cao and Z. Lin, “A Descriptor System Approach to Robust Stability Analysis and Controller Synthesis,” IEEE Trans. Auto. Control, Vol. 49, No. 11, pp. 2081-2084, 2004.
    [31] Y. T. Juang, Z. C. Hong and Y. T. Wang, “Robustness of Pole Assignment in a Specified Region,” IEEE Trans. Auto. Control, Vol. 34, pp. 751-758, 1989.
    [32] Y. T. Juang, “Robust Stability and Robust Pole Assignment of Linear System with Structured Uncertainty,” IEEE Trans. Auto. Control, Vol. 36, pp. 635-637, 1991.
    [33] Y. H. Lou and Yau-Tarng Juang, ”Fuzzy control of uncertain systems
    with pole placement and variance constraints, ” 2005 AASRC/CCAS Joint
    Conf., Kaohsiung, December 10, 2005 .
    [34] Z. Wang, X. Chen and Z. Guo, “Controller Design for Continuous Systems with Variance and Circular Pole Constraints,” Int. J. Syst. Sci., Vol. 26, pp. 1249-1256, 1995.

    QR CODE
    :::