跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周宏宇
Hong-Yu Zhou
論文名稱: 以時域有限差分法研究色散介質及其光傳播行為
Research on Dispersive Media and its Light Propagation Behavior Based on Finite Difference Time Domain Method
指導教授: 欒丕綱
Pi-Gang Luan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 97
中文關鍵詞: 時域有限差分法色散介質光子晶體磁化電漿Z轉換次波長成像
外文關鍵詞: Finite Difference Time Domain, Dispersive Media, Photonic Crystal, Magnetized Plasma, Z Transform, Subwavelength Imaging
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文採用時域有限差分法(Finite Difference Time Domain,FDTD)探討非色散光子晶體與色散光子晶體的能帶結構及其光傳播行為。在FDTD運算過程中,我們使用Z轉換方法處理金屬、磁化電漿等色散介質的本構關係。並且介紹如何以FDTD計算能帶結構。本篇研究主要討論二維情況,探討不同填充率、不同偏振態下的非色散光子晶體能帶結構變化,以及色散光子晶體在不同電漿頻率、不同外加磁場的狀況下對於能帶結構的影響,並且應用計算出的能帶結構結果,觀察特定頻率的電磁波在光子晶體中的傳播行為。最後,利用光子晶體平板的光學特性產生次波長成像現象,並探討在不同外加磁場下,磁場對於金屬光子晶體平板的次波長成像影響。


    In this thesis, we use Finite Difference Time Domain (FDTD) method to calculate the band structure and light propagation behavior in non-dispersive photonic crystals and dispersive photonic crystals. In the FDTD calculation process, we apply the Z-transform method to deal with the constitutive relations of dispersive media such as metal and magnetized plasma. We also introduce how to calculate the band structure with FDTD. This research mainly discusses the two-dimensional situations. For the non-dispersive photonic crystals, we discuss the change in band structure with different filling factors and different polarization states. For the dispersive photonic crystals, we study the influences on the band structure under different plasma frequencies and different external magnetic fields, and apply the calculated band structure results to predict the propagation behavior of electromagnetic waves of a specific frequency in the photonic crystals structure. Finally, we use the optical characteristics of the photonic crystal slab to generate the subwavelength imaging phenomena and discuss the effects of different external magnetic fields on the subwavelength imaging of the metallic photonic crystal slab.

    摘要 (I) Abstract (II) 誌謝 (III) 目錄 (IV) 圖目錄 (VII) 表目錄 (X) 一、緒論 (1) 1.1 光子晶體發展背景 (1) 1.2 光子晶體特性 (1) 1.3 研究方向 (5) 二、時域有限差分法(Finite Difference Time Domain, FDTD) (6) 2.1 FDTD的發展 (6) 2.2 馬克斯威爾方程式及其改寫形式 (7) 2.3 Yee晶格與電磁場遞迴關係 (9) 2.3.1 一維情況 (10) 2.3.2 二維情況 (13) 2.3.3 三維情況 (18) 2.4 邊界條件 (20) 2.4.1 完美導體邊界 (20) 2.4.2 週期邊界 (21) 2.4.3 完美匹配邊界 (22) 2.5 穩定性條件 (32) 2.5.1 時間離散間隔的穩定性要求 (32) 2.5.2 Courant – Friedrichs – Lewy Condition (33) 2.5.3 數值色散對於空間離散間隔的要求 (35) 三、色散介質的FDTD (38) 3.1 色散介質 (38) 3.2 Z轉換(Z-Transform)方法 (38) 3.2.1 Z轉換的基本定義 (38) 3.2.2 Z轉換的捲積定理 (39) 3.2.3 Z轉換的移位定理 (41) 3.3 杜德模型(Drude Model) (42) 3.3.1 頻域模型 (42) 3.3.2 杜德模型的Z-FDTD (43) 3.4 磁化電漿(Magnetized Plasma) (44) 3.4.1 頻域模型 (44) 3.4.2 磁化電漿的Z-FDTD (45) 四、以FDTD計算能帶結構 (52) 4.1 計算區域 (52) 4.2 週期邊界條件 (53) 4.3 初始條件 (54) 4.4 材料響應分析 (54) 五、光子晶體特性模擬 (57) 5.1 非色散光子晶體特性模擬 (57) 5.1.1 正方晶格光子晶體特性 (57) 5.1.2 填充率不同的影響 (60) 5.2 色散光子晶體特性模擬 (62) 5.2.1 金屬圓柱光子晶體特性 (62) 5.2.2 填充率不同的影響 (63) 5.2.3 電漿頻率不同的影響 (65) 5.2.3 外加磁場的影響 (66) 5.3 次波長成像 (68) 5.3.1 非色散光子晶體平板成像 (68) 5.3.2 色散光子晶體平板成像 (71) 六、結論與未來展望 (78) 6.1 結論 (78) 6.2 未來展望 (79) 參考文獻 (80)

    [1] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Physical Review Letters, 58, 2059-2062 (1987).
    [2] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, 58, 2486-2489 (1987).
    [3] E. Yablonovitch, "Photonic Crystals: Semiconductors of Light," Scientific American, 285, 47-51, 54 (2002).
    [4] K. Sakoda, Optical Properties of Photonic Crystals, 2nd Ed., Springer Berlin Heidelberg (2004).
    [5] I. Sukhoivanov and I. Guryev, Photonic Crystals, Physics and Practical Modeling, 2010th Ed., Springer (2009).
    [6] C. Kittel, Introduction to Solid State Physics, 8th Ed., Wiley, New York (1986).
    [7] K. Yee, "Numerical Solution of Initial Boundary Value Problem Involving Maxwell's Equations in Isotropic Media," IEEE Trans. Antennas and Propagation, 14, 302-307 (1966).
    [8] A. Taflove, Computation Electrodynamics—The Finite-Difference Time-Domain Method, 3rd Ed., Artech House (1995).
    [9] A. Elsherbeni and V. Demir, The finite-difference time-domain method for electromagnetics with MATLAB® simulations, 2nd Ed., Scitech Publishing (2016).
    [10] 馬雲鵬、姬金祖、張生俊、黃沛霖、劉戰合,時域有限差分法(基於MATLAB)。西安電子科技大學出版社 (2018)。
    [11] 林振華,電磁場與天線分析-使用時域有限差分法(FDTD)。全華圖書公司(1999)。
    [12] J. Berenger, "A Perfect Matched Layer for the Absorption of Electromagnetic Waves," Journal of Computational Physics, 114, 185-200 (1994).
    [13] Z. Sacks, D. Kingsland, R. Lee, and J.-F. Lee, "A Perfectly Matched Anisotropic Absorber for Use as an Absorbing Boundary Condition," IEEE Trans. Antennas and Propagation, 43, 1460-1463 (1996).
    [14] W. C. Chew and W. Weedon, "A 3-D Perfectly Matched Medium From Modified Maxwell's Equations with Stretched Coordinates," Microwave and Optical Technology Letters, 7, 599-604 (1994).
    [15] J. P. Berenger, "Perfectly Matched Layer for the FDTD Solution of Wave-Structure Interaction Problems," IEEE Trans. Antennas and Propagation, 44, 110-117 (1996).
    [16] R. Courant, F. K.O, and H. Lewy, "On the Partial Difference Equations of Mathematical Physics," IBM Journal of Research and Development, 11, 215-234 (1967).
    [17] R. J. Luebbers, F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas and Propagation, 39, 29-34 (1991).
    [18] O. Ramadan, "General ADE formulations of SC-PM for modelling multi-term dispersive FDTD applications," Electronics Letters, 47, 1122-1124 (2011).
    [19] D. M. Sullivan, "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. Antennas and Propagation, 40, 1223-1230 (1992).
    [20] 葛德彪、閆玉波,電磁波時域有限差分方法。西安電子科技大學出版 (2011)。
    [21] L. Bo, J. Lin, and G. Ben-Qing, "A novel solution for magnetized plasma simulation using the FDTD method," IEEE Trans. Antennas and Propagation, 2, 106-109 (2005).
    [22] S. Huang and F. Li, "Finite-difference time-domain simulation of electromagnetic propagation in magnetized plasma," Computer Physics Communications, 166, 45-52 (2005).
    [23] X.-y. Huang, C.-m. Tong, and L.-x. Ma, "Improved (FD)2TD formulations based on Z transform for anisotropic plasma," Proceedings of the 2010 IEEE International Conference on Progress in Informatics and Computing, 2, 1170-1173 (2010).
    [24] M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," Journal of Applied Physics, 87, 8268-8275 (2000).
    [25] A. Singh and P. Jain, "FDTD Analysis of the Dispersion Characteristics of the Metal PBG Structures," Progress In Electromagnetics Research B, 39, 71-88 (2012).
    [26] C. Chan, Q. Yu, and K. Ho, "Order-N Spectral Method for Electromagnetic Waves," Physical review. B, Condensed matter, 51, 16635-16642 (1995).
    [27] J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Physical review letters, 85, 3966-3969 (2000).
    [28] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Physical Review B - Condensed Matter and Materials Physics, 65, 2011041-2011044 (2002).
    [29] 欒丕綱、陳啟昌,光子晶體:從蝴蝶翅膀到奈米光子學. 五南圖書出版股份有限公司 (2010).
    [30] H.-T. Chien, H.-T. Tang, C.-H. Kuo, C. L. Chen, and Z. Ye, "Directed diffraction without negative refraction," Physical Review B, 70, 11-15 (2003).
    [31] C. Luo, S. Johnson, J. Joannopoulos, and J. Pendry, "Negative refraction without negative index in metallic photonic crystals," Optics express, 11, 746-754 (2003).
    [32] P.-G. Luan and K.-D. Chang, "Photonic-crystal Lens Coupler Using Negative Refraction," Piers Online, 3, 91-95 (2007).
    [33] P.-G. Luan and K.-D. Chang, "Superlensing effect without obvious negative refraction," Journal of Nanophotonics, 1, 013518 (2007).

    QR CODE
    :::