| 研究生: |
林鼎竣 Ding-Jiun Lin |
|---|---|
| 論文名稱: |
運用二維地電阻影像法推估屏東平原扇頂地區非拘限含水層在乾濕季之地下水位變化及比出水率 The Estimation of the Groundwater Table and Specific Yield of Unconfined Aquifer with 2D Electrical Resistivity Imaging in the Pengcuo area of Pingtung Plain, Taiwan |
| 指導教授: |
張竝瑜
Ping-Yu Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 屏東平原 、二維地電阻影像法 、van Genuchten保水曲線模型 、比出水率 、地下水 |
| 外文關鍵詞: | Pingtung Plain, 2D Electrical Resistivity Imaging, van Genuchten model, Specific yield, Groundwater |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
屏東平原為台灣第二大平原,由高屏溪、東港溪等多條河流沖積而成,擁有良好水文地質條件,地下水豐沛,然而本區觀測井資料空間分布不均,因此對於區域性地下水資源之水文特性了解仍有限,為更深入了解地下水資源之水文特性,本研究運用二維地電阻影像法(ERI),採用 Wenner 及 Schlumberger 陣列進行施測,並以測區內彭厝觀測井的地下水位觀測資料作為驗證背景資料,於2019年跨乾溼季節進行五次施測,每次佈設10條二維地電阻測線,以推估屏東扇頂地區之地下水位面在乾溼季的變化。本研究將所測得之視電阻率進行反演算,得出不同測點真實電阻率隨深度分布資料後,再利用Archie’s Law 轉換為相對飽和度空間分布,最後利用 Van Genuchten 模型推估的保水曲線來估算地下水深度,同時利用保水曲線所推估的殘餘含水量(θ_r)及飽和含水量(θ_s)推算理論比出水率(S_y)。運用上述的不同季節施測之研究結果,扇頂的彭厝地區二月時地下水深度約在地下8.6至13.7公尺之間,而五月初施測之地下水位高程分布因受乾季影響相較其它月份低,深度約9.5至14.7公尺,七月及九月則因進入溼季大量降雨緣故,相較於五月地下水位明顯上升2至10公尺,十一月為乾季初期,地下水位較濕季低,地下水深度為5至15公尺。從各月地下水位高程分布圖中發現地下水位高程分布整體趨勢由扇頂向西或向西南遞減,主要是受到扇頂補注區降雨影響,然而在濕季测區北邊的地下水位高程則有由北向南的局部性遞減趨勢,本研究認為是受到隘寮溪及過去武洛溪的河川補注架構影響。此外,本研究在濕季時發現部份测線受到暫棲水影響,使得所推估之地下水位過度低估,藉由正演模型比對出有無暫棲水影響下的誤差最高可達到11公尺,也可依此作為校正受影響之测線的地下水位參考。本研究地電阻推估之比出水率約在0.15到0.21之間,顯示區域內有良好的地下水資源開發潛勢。
The Pingtung Plain is the second largest plain in Taiwan, and also has good hydrogeological conditions and recharge source for groundwater. However, the spatial distribution of observation wells in this area are uneven. So the regional hydrological structure still has some uncertainty. In order to provide better information about groundwater hydrological structure of fan head of Pingtung plain. We conducted Electrical resistivity imaging (ERI) survey for time-lapse monitoring of the groundwater level, and also attempt to estimate the specific yield. In 2019, we deployed ten ERI survey lines with both Wenner and Schlumberger array configurations and conducted the time-lapse measurements 5 times during the wet and dry season. Based on the Archie’s law , we estimate the relative saturation change with depth on each ERI profile which then will be used to apply van Genuchten model to estimate the groundwater depth and specific yield. Afterwards, we compared our groundwater level data to the adjacent Pengcuo observation well in order to justify the result. In February, the groundwater level varies between 8.6 - 13.7 m. In May, the groundwater level decreased to 9.5 - 14.7 m. In June and September, the groundwater depth increased significantly due to the wet season, which was increased about 2 to 10 m. While the groundwater depth in November started to decrease to 5.0- 15.0 m. Overall, the groundwater level in the dry and wet seasons showed a trend of decreasing gradually from the fan head of plain to the South-West or West. However, the North part of study area showed a regional trend of decreasing gradually from North to South, which considered that was affected by the river recharge structure of Ailao river and Wuluo river. The specific yield in the study area is 0.16 to 0.26, which also indicating that there is a good potential for groundwater resources development in the area.
Archie, G. E. (1942). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 146(01), 54-62. doi:10.2118/942054-G
Barker, R. D., & Moore, J. (1998). The application of time-lapse electrical tomography in groundwater studies. The Leading Edge, 62, 1454-1458.
Bedrosian, P. A., Burton, B. L., Powers, M. H., Minsley, B. J., Phillips, J. D., & Hunter, L. E. (2012). Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California. Journal of Applied Geophysics, 77, 7-20. doi:10.1016/j.jappgeo.2011.11.002
Benson, A. K., Payne, K. L., & Stubben, M. A. (1997). Mapping groundwater contamination using dc resistivity and VLF geophysical methods - A case study. Geophysics, 62(1), 80-86. doi:10.1190/1.1444148
Berthold, S., Bentley, L. R., & Hayashi, M. (2004). Integrated hydrogeological and geophysical study of depression-focused groundwater recharge in the Canadian prairies. Water Resources Research, 40(6), 19. doi:10.1029/2003wr002982
Buselli, G., & Lu, K. L. (2001). Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. Journal of Applied Geophysics, 48(1), 11-23. doi:10.1016/s0926-9851(01)00055-6
Das, B. M. (2013). Advanced soil mechanics: Crc Press.
deGroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613-1624.
Deiana, R., Cassiani, G., Kemna, A., Villa, A., Bruno, V., & Bagliani, A. (2007). An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring. Near Surface Geophysics, 5(3), 183-194. doi:10.3997/1873-0604.2006030
Dimova, N. T., Swarzenski, P. W., Dulaiova, H., & Glenn, C. R. (2012). Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems. Journal of Geophysical Research-Oceans, 117. doi:10.1029/2011jc007509
Ellis, R., & Oldenburg, D. (1994). Applied geophysical inversion. Geophysical Journal International, 116(1), 5-11.
Farzamian, M., Monteiro Santos, F. A., & Khalil, M. A. (2015). Estimation of unsaturated hydraulic parameters in sandstone using electrical resistivity tomography under a water injection test. Journal of Applied Geophysics, 121, 71-83. doi:10.1016/j.jappgeo.2015.07.014
Frohlich, R. K., & Kelly, W. E. (1988). Estimates of specific yield with the geoelectric resistivity method in glacial aquifers. Journal of Hydrology, 97(1), 33-44. doi:https://doi.org/10.1016/0022-1694(88)90064-9
Hsieh, S. H. (1970). Geology and gravity anomalies of the Pingtung Plain, Taiwan. Proc. Geol. Soc. China, 13, 76-89. Retrieved from https://ci.nii.ac.jp/naid/10006236578/en/
Johnson, A. I. (1967). Specific yield: compilation of specific yields for various materials: US Government Printing Office.
Jupp, D., & Vozoff, K. (1975). Stable iterative methods for the inversion of geophysical data. Geophysical Journal International, 42(3), 957-976.
Khalil, M. A., Abbas, A. M., Santos, F. M., Masoud, U., & Salah, H. (2013). Application of VES and TDEM techniques to investigate sea water intrusion in Sidi Abdel Rahman area, northwestern coast of Egypt. Arabian Journal of Geosciences, 6(8), 3093-3101.
Lines, L., & Treitel, S. (1984). A review of least‐squares inversion and its application to geophysical problems. Geophysical prospecting, 32(2), 159-186.
Loke, M. (1999). Electrical imaging surveys for environmental and engineering studies. A practical guide to, 2.
Loke, M., & Barker, R. (1995). Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60(6), 1682-1690.
Loperte, A., Soldovieri, F., Palombo, A., Santini, F., & Lapenna, V. (2016). An integrated geophysical approach for water infiltration detection and characterization at Monte Cotugno rock-fill dam (southern Italy). Engineering Geology, 211, 162-170. doi:10.1016/j.enggeo.2016.07.005
Manheim, F. T., Krantz, D. E., & Bratton, J. F. (2004). Studying Ground Water Under Delmarva Coastal Bays Using Electrical Resistivity. Ground Water, 42(7), 1052-1068. doi:10.1111/j.1745-6584.2004.tb02643.x
Mark, E., & Everett. (2013). Near -Surface Applied Geophysics. United States of America: Cambridge Universit Press, New York.
Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5), 20. doi:10.1029/2002wr001581
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522.
Park, S., Yi, M. J., Kim, J. H., & Shin, S. W. (2016). Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea. Journal of Applied Geophysics, 135, 1-7. doi:10.1016/j.jappgeo.2016.07.004
Puntu, J. M. (2019). Using Electrical Resistivity Imaging Method to Estimate the Water Table and the Specific Yield of the Unconfined Aquifer: A Case Study along the Wuxi River i tne Taichung-Nantou Basin, Central Taiwan (Earth Science). National Central University,
Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., & Richard, G. (2005). Electrical resistivity survey in soil science: a review. Soil and Tillage research, 83(2), 173-193.
Schlumberger, C. (1920). Etude sur la prospection electrique du sous-sol: Gauthier-Villars.
Swiss Standard, S. (1999). 670 010b. Retrieved from
Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil science society of America journal, 44(5), 892-898.
Wenner, F. (1912). The four-terminal conductor and the Thomson bridge: US Government Printing Office.
中華民國養殖漁業發展協會. (2019). 屏東縣養殖漁業生產區統計. Retrieved from https://www.fish1996.com.tw/pingtung.html
江崇榮, 賴., 陳文政, 費立沅, 侯進雄, 黃智昭, 陳瑞娥, 陳利貞, 賴慈華, 呂學諭, 陸挽中, 周素卿. (2002). 臺灣地區地下水觀測網第一期計畫:屏東平原水文地質調查研究總報告. 經濟部中央地調所
江崇榮;汪中和. (2002). 以氫氧同位素組成探討屏東平原之地下水補注源. 經濟部中央地質調查所彙刊;第15號, 第49-67頁.
吳尹聿. (2011). 雲林地區濁水溪沖積扇地下水補注地質敏感區地電阻勘查. (地球科學學類). 國立臺灣海洋大學,
吳佳珊. (2013). 利用地表地電阻法協助劃定屏東平原地下水補注區邊界之研究. (碩士). 國立海洋大學,
李正兆. (2009). 整合地電阻法與水文地質調查於崩塌地滑動之機制研究. National Central University,
姚馨如. (2018). 應用二維地電阻法推估名竹盆地淺層含水層水位變化及比出水率. (地球科學學類). National Central University,
張良正, 張., 陳文福, 黃金維, 彭宗仁, 余化龍, 王志添, 蕭金財, 何智超, 陳宇文. (2019). 地下水水文地質與水資源調查-地下水庫活化與效益評估(3/4). 經濟部中央 地質調查所
張竝瑜, 陳宇文, 蔡瑞彬, 張良正, 江崇榮, 林海倫, & 陳祐誠. (2013). 應用一維地電阻於水力傳導係數推估-以濁水溪沖積扇第一含水層為例. 中國土木水利工程學刊, 25(4), 311-321.
梅興泰, 鄭., 蔡道賜. (2006). 地電阻影像剖面法對非均質地下實體之模擬分析. 技術學刊, 21(4), 369-381.
陳文山, 楊志成, 吳樂群, 楊小青, 陳勇全, 顏一勤, . . . 林偉雄. (2004). 沉降環境的山麓河谷地形特性—探討臺北盆地, 蘭陽平原與屏東平原鄰近山麓地形與構造的關係. 經濟部中央地質調查所彙刊, 17 民 93.09, 79-106.
陳文福, 張., 田巧玲. (1999). 礫石層粒徑與透水係數之關係. 臺灣水利, 188, 58-65.
馮正一, 鄒佩蓉, 陳奕凱, & 鄭旭涵. (2011). 應用地電阻剖面法於土壤地層水份變化與 SPT-N 值比對.
楊萬全. (1997). 高屏溪流域和屏東平原的水資源. 國立臺灣師範大學地理研究報告.
經濟部中央地質調查所. (1998). 臺灣地區地下水觀測網整體第一期計畫-八十七年度報告
經濟部中央地質調查所. (2004). 地下水補注地質敏感區劃定計畫書G0002 屏東平原. (09900331501).
經濟部中央地質調查所. (2019). 地質整合查詢. Retrieved from https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm. https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm
經濟部水利署. (2018). 台灣地區民國107年農業用水量統計報告. 經濟部水利署: 經濟部水利署
經濟部水利署. (2019). 水利地理資訊服務平台-地下水質間測站位置圖. Retrieved from https://gic.wra.gov.tw/Gis/gic/API/Google/Index.aspx. from 經濟部水利署 https://gic.wra.gov.tw/Gis/gic/API/Google/Index.aspx
董倫道, 楊., 陳平護. (1995). 台灣區第下水觀測網第一期計畫:水文地質調查研究及建檔 八十四年度報告 地球物理探測及地層對比之應用. (中央地質調查所報告地84-034號).
劉威行. (2007). 地電阻法應用於淺層地下水偵測:嘉義汴頭地區. (碩士 地球科學學類). 國立中正大學,