| 研究生: |
鄒仕豪 Shih-hao Chou |
|---|---|
| 論文名稱: |
間隙流體對於旋轉儀內顆粒偏析機制的影響 The effect of liquid on particle segregation mechanism in rotating drum |
| 指導教授: |
蕭述三
Shu-San Hsiau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 液體含量 、液體黏度 、分離 、安息角 、流動層 |
| 外文關鍵詞: | flowing zone, angle of repose, liquid content, liquid viscosity, segregation |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以類二維的精密旋轉儀為實驗設備,並以實驗的方式分別針對在不同的間隙流體含量以及不同的間隙流體黏度條件下,精密旋轉儀中顆粒的分離現象、安息角(angle of repose)角度,以及流動層厚度的研究探討。實驗結果顯示出當間隙流體含量逐漸增加的同時,安息角角度和流動層厚度也會隨之漸漸的變大,且當間隙流體的含量超過某一臨界值時,安息角角度及流動層厚度將不再改變,而趨近於一穩定值。而在分離現象方面,分離強度會隨著間隙流體含量的增大而漸漸變小,且當間隙流體的含量超過某一臨界值時,分離強度將也會趨近於一穩定值。而當我們固定間隙流體含量然後改變間隙流體的黏度時,安息角角度和流動層厚度也會隨著黏度的增加而變大,但分離強度會隨著間隙流體黏度的增加而減弱。實驗也可以得知,不管增加間隙流體的含量或是增加間隙流體的黏度,粒子的流動速度都會隨之而變慢。
A quasi-2D rotating drum was used to investigate segregation phenomena in this research. The effects of content and viscosity of added liquid on segregation index, angle of repose, and the flowing thickness in the rotating drum were experimental discussed in the paper.
The angle of repose and flowing thickness in the rotating drum increased with increasingly added liquid content. As the added liquid content was lager than the critical amount, the angle of repose and flowing thickness would reach a stable value.
The segregation index of mixture in the rotating drum decreased with the increase of added liquid content and that would reach a stable value as the added liquid content larger than the critical amount.
With changing the viscosity of liquid at the same liquid content, the angle of repose and flowing thickness increased but the segregation index decreased.
The velocities of particle motion in the rotating drum would be slower due to the increasingly content and viscosity of the added liquid.
1.Shamlon, P. A., Handling of Bulk Solids, Butterworth, London, 1988.
2.賈魯強和黎璧賢,「漫談顆粒體物理」,物理雙月刊,二十三卷第四期,503-510頁,2001。
3.Campbell, C. S., “Rapid granular flows,” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92, 1990.
4.Liu, X. Y., Specht, E., Mellmann, J., “Experimental study of the lower and upper angles of repose of granular materials in rotating drums,” Powder Technol., Vol. 154, pp. 125-131, 2005.
5.Pohlman, N. A., Severson, B. L., Ottino, J. M., and Lueptow, R. M., “Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation,” Phys. Rev. E., Vol. 73, pp. 031304: 1-9, 2006.
6.Felix, G.., Falk, V., and D’Ortona, U., “Segregation of dry granular material in rotating drum: experimental study of the flowing zone thickness,” Powder Technol., Vol. 128, pp. 314-319, 2002.
7.Dury, C. M. and Ristow, G. H., “Competition of mixing and segregation in rotating cylinders,” Phys. Fluid, Vol. 11, pp. 1387-1394, 1999.
8.Chakraborty, S., Nott, P. R., and Prakash, J. R., “Analysis of radial segregation of granular mixtures in a rotating drum,” Eur. Phys. J. E, Vol. 1, pp. 265-273, 2000.
9.Ristow, G. H., “Particle mass segregation in a two-dimensional rotating drum,” Europhys Lett., Vol. 28, pp. 97-101, 1994.
10.Jain, N., Ottino, J. M., and Lueptow, R. M., “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granul. Matter, Vol. 7, pp. 69-81, 2005.
11.Thomas, N., “Reverse and intermediate segregation of large beads in dry granular media,” Phys. Rev. E., Vol. 62, pp. 961-974, 2000.
12.Hill, K. M., Gioia, G., and Amaravadi, D., “Radial segregation patterns in rotating granular mixture: waviness selection,” Phys. Rev. Lett., Vol. 93, pp. 224301: 1-4, 2004.
13.Zuriguel, I., Gray, J. M. N. T., Peixinho, J., and Mullin, T., “Pattern selection by a granular wave in a rotating drum,” Phys. Rev. E, Vol. 73, pp. 061302: 1-4, 2006.
14.Kuo, H. P., Hsu, R. C., and Hsiao, Y. C., “Investigation of axial segregation in a rotating drum,” Powder Technol., Vol. 153, pp. 196-203, 2005.
15.Van Puyvelde, D. R., Young, B. R., Wilson, M. A., and Schmidt, S. J., “Experimental determination of transverse mixing kinetics in a rolling drum by image analysis,” Powder Technol., Vol. 106, pp. 183-191, 1999.
16.Eskin, D. and Kalman, H., “A numerical parametric study of size segregation in a rotating drum,” Chem. Eng. Process, Vol. 39, pp. 539-545, 2000.
17.Albert, R., Albert, I., Hombaker, D., Schiffer, P., and Barabasi, A. L., “Maximum angle of stability in wet and dry spherical granular media,” Phys. Rev. E, Vol. 56, pp. 6271-6274, 1997.
18.Rennie, P. R., Chen, X. D., Hargreaves, C., and Mackereth, A. R., “A study of the cohesion of dairy powders,” J. Food. Eng., Vol. 39, pp. 277-284, 1999.
19.Fraysse, N., Thome, H., and Petit, L., “Humidity effects on the stability of a sandpile,” Eur. Phys. J. B, Vol. 11, pp. 615-619, 1999.
20.Howell, D. W., Aronson, I. S., and Crabtree, G. W., “Dynamics of electrostatically driven granular media: Effects of humidity,” Phys. Rev. E., Vol. 63, 050301: 1-4, 2001.
21.Nase, S. T., Vargas, W. L., Abatan, A. A., and McCarthy, J. J., “Discrete characterization tools for cohesive granular material,” Powder Technol., Vol. 116, pp. 214-223, 2001.
22.Jain, K., Shi, D. L., and McCarthy, J. J., “Discrete characterization of cohesion in gas-solid flows,” Powder Technol., Vol. 146, pp. 160-167, 2002.
23.Samadani, A. and Kudrolli, A., “Angle of repose and segregation in cohesive granular matter,” Phys. Rev. E., Vol. 64, pp. 051301: 1-9, 2001.
24.Hsiau, S. S. and Yang, S. C., “Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect on liquid bridges,” Chem. Eng. Sci., Vol. 58, pp. 339-351, 2003.
25.Li, H. M. and McCarthy, J. J., “Controlling cohesive particle mixing and segregation,” Phys. Rev. Lett., Vol. 90, pp. 18430: 1-4, 2003.
26.Kohonen, M. M., Geromichalos, D., Scheel, M., Schierb, C., and Herminghausb, S., “On capillary bridges in wet granular materials,” Physica A, Vol. 339, pp. 7-15, 2004.
27.Li, H. M. and McCarthy J. J., “Phase diagrams for cohesive particle mixing and segregation,” Phys. Rev. E, Vol.71, pp. 021305: 1-8, 2005.
28.Yang, S. C. and Hsiau, S. S., “The simulation of powders with liquid bridges in a 2D vibration bed,” Chem. Eng. Sci., Vol. 56, pp. 6837-6849, 2001.
29.Ennis, B. J., Tardos, G. I., and Pfeffer, R., “The influence of viscosity on the strength of an axially strained pendular liquid bridge,” Chem. Eng. Sci., Vol. 45, pp. 3071-3088, 1999.
30.Adams, M. J., Thornton, C., and Lian, G., “First International Particle Technology Forum,” Agglomerate Coalescence, Vol. 1, August 17-19, Denver, USA, pp. 220-224, 1994.
31.Mason, T. G., Levine, A. J., Ertas, D., and Halsey, T. C., “Critical angle of wet sandpiles,” Phys. Rev. E, Vol. 60, pp. R5044-R5047, 1999.
32.Fisher, R. A., “On the capillary forces in an ideal soil,” J. Agric. Sci., Vol. 16, pp. 492-505, 1926.
33.Lian, G., Thornton, C., and Adams, M. J., “Microscopic simulation of oblique collisions of ‘wet’ agglomerates,” in: R.P. Behringer, J. T. Jenkins (Eds.), Powders and Grains 97, Balkema, Rotterdam, pp. 223-226, 1997.
34.Lian, G., Thornton, C., and Adams, M. J., “Discrete particle simulation of agglomerate impact coalescence,” Chem. Eng. Sci., Vol. 53, pp. 3381-3391, 1998.
35.Mikami, T., Kamiya, H., and Horio, M., “Numerical simulation of cohesive powder behavior in a fluidized bed,” Chem. Eng. Sci., Vol. 53, pp. 1927-1940, 1998.
36.Lian, G., Thornton, C., and Adams, M. J., “A theoretical study of the liquid bridge forces between two rigid spherical bodies,” J. Colloid Interf. Sci., Vol. 161, pp. 138-147, 1993.
37.Adams, M. J. and Perchard, V., “The cohesive forces between partilces with interstitial liquid,” Inst. Chem. Engng Symp., Vol. 91, pp. 147-160, 1985.
38.Goldman, A.J., Cox, R. G., and Brenner, H., “Slow viscous motion of a sphere parallel to a plan wall I. Motion through a quiescent fluid,” Chem. Eng. Sci., Vol. 22, pp. 637-651, 1967.
39.Henein H, Brimacomble J. K., and Watkinson A. P., “Experimental study of transverse bed motion in rotary kilns,” Metall. Trans. B, Vol. 14, pp. 191-205, 1983.
40.Rajchenbach J, “Flow in powders: from discrete avalanches to continuous regime,” Phys. Rev. Lett., Vol. 65, pp. 2221-2224, 1990.
41.Mellmann, J., “The transverse motion of solids in rotating cylinders-forms of motion and transition behavior,” Powder Technol., Vol 118, pp. 251-270, 2001.
42.Boateng, A. A. and Barr, B. V., “Modeling of particle mixing and segregation in the transverse plane of a rotary kiln,” Chem. Eng. Sci., Vol. 51, pp. 4167-4181, 1996.
43.Ingram, A., Seville, J. P. K., Parker, D. J., Fan, X., and Forster, R. G., “Axial and radial dispersion in rolling mode rotating drums,” Powder Technol., Vol. 158, pp. 76-91, 2005.
44.Boateng, A. A., “Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” Int. J. Multiphase flow, Vol. 24, pp. 499-521, 1998.
45.Orpe, A. V. and Khakhar, D. V., “Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Phys. Rev. E, Vol. 64, pp. 031302 1-13, 2001.
46.Jain, N., Ottino, J. M., and Lueptow, R. M., “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granul. Matter, Vol.7, pp. 69-81, 2005.
47.McCarthy, J. J., “Micro-modeling of cohesive mixing processes,” Powder Technol., Vol. 138, pp. 63-67, 2003.
48.Li, H. M., McCarthy, J. J., “Cohesive particle mixing and segregation under shear,” Powder Technol., Vol. 164, pp. 58-64, 2005.
49.Danckwerts, P. V., “The definition and measurement of some characteristic of mixtures,” Appl. Sci. Res., Vol. 3, pp 279-296, 1952.
50.Van Puyvelde, D. R., Young, B. R., Wilson, M. A., and Schmidt, S. J., “Experimental determination of transverse mixing kinetics in a rolling drum by image analysis,” Powder Technol., Vol. 106, pp. 183-191, 1999.
51.Finnie, G.. J., Kruyt, N. P., Ye, M., Zeilstra, C., and Kuipers, J. A. M., “Longitudinal and transverse mixing in rotary kilns: A discrete element method approach,” Chem. Eng. Sci., Vol. 60, pp. 4083-4091, 2005.
52.Khakhar, D. V., McCarthy, J. J., and Ottino, J. M., “Radial segregation of granular mixtures in rotating cylinders,” Phys. Fluids, Vol. 9, pp. 3600-3614, 1997.
53.Pietsch, W., "Size enlargement by agglomeration," Salle, Sauerlander Eds, pp. 33-37, 1990.