跳到主要內容

簡易檢索 / 詳目顯示

研究生: 趙家加
Chia-Chia Chao
論文名稱: Electronic and Spin Transport Properties of Fe/MgO/Fe Magnetic Tunnel Junction: Combined First-Principles Calculation and TB-NEGF Method
指導教授: 唐毓慧
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 84
中文關鍵詞: 電子自旋傳輸磁性穿隧接面第一原理結合非平衡格林函數自旋轉移力矩磁電 阻式隨機存取記憶體
外文關鍵詞: spin transport properties, MgO-based magnetic tunnel junctions, Combined First-Principles Calculation and TB-NEGF Method, spin torque effect, non-volatile magnetic random access memories
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以氧化物作為穿隧阻絕層的磁性穿隧接面被廣泛的應用於磁電阻式隨機存取記憶體中。因為磁性穿隧接面透過不同的磁矩組態產生極大的穿隧磁阻值,形成磁性記憶體的最小單元,而磁矩組態可以透過外加磁場或利用自旋極化電流控制。自旋極化電流會在磁性穿隧接面中產生自旋轉移力矩,進而影響磁性材料中的磁矩方向來達成控制磁矩組態的目的。
    隨著長晶技術的成長,因為氧化鎂晶體自身獨特的電子結構特性,氧化鎂為穿隧阻絕層的磁性穿隧接面成為相當經典的研究題材,無論在實驗與理論中都發現了極大的穿隧磁阻值。而在這項研究中,我們利用第一原理計算來分析鐵/氧化鎂/鐵磁性穿隧接面的電子結構特性以及電子傳輸特性。氧化鎂因為軌域對稱性所形成的Δ_1能階,擁有一個獨特的傳輸通道,所以在這個系統中我們透過傳輸機率可以估計出大約3000%的穿隧磁阻值,並且我們也透過我們所新開發的JunPy來分析系統中的自旋力矩,了解其中控制磁矩方向之運作特性,以及與其他實驗與理論的研究結果相互比較,驗證我們所開發的軟體之可信度,為未來研究其他不同材料的基石。另一方面,我們也嘗試選擇氧化銪為穿隧阻絕層的磁性穿隧接面,其與氧化鎂有相同的Δ_1能階特性同時本身具有自旋極化的特性,我們透過第一原理分析其電子結構特性,未來希望能透過JunPy程序進一步分析其自旋傳輸特性。


    Magnetic tunnel junctions (MTJs) have aroused intensive studies for applications in non-volatile magnetic random access memories (MRAMs), which have been widely used, and the most important property of MTJs is the tunneling magnetoresistance (TMR) effect. The giant magnetoresistance (MR) ratio originates from the tunneling current depending on the relative orientation of two FM electrodes that can be controlled by a spin-polarized current via the so-called spin torque effect. The spin-transfer torque (STT) and the field-like spin torque (FLST) are two components of the spin torque effect.
    We employ the first-principles calculation with the non-equilibrium Green’s function (NEGF) method to analyze the electronic and transport properties. For Fe/MgO/Fe MTJs, the orbital symmetry of ∆_1 state in MgO-barrier is responsible for giant TMR effect that is estimated over 3000% at zero bias. Moreover, our newly developed “JunPy” package is employed to investigate both STT and FLST in non-collinear magnetic configurations, which comparable with previous experimental measurements and theoretical calculations and demonstrate the validity of “JunPy” package. These two components, STT and FLST, are responsible for the magnetization switching, which can control the magnetization configurations in MTJs. As a future work, we propose the EuO-based MTJs and expect the ∆_1 state and spin-polarized EuO-barrier may play a significant role on the enhancement for both TMR and FLST, which may create the next-generation FLST-MRAM.

    Chapter 1 Introduction 1 Chapter 2 Theory 5 2.1 Density Functional Theory 5 2.1.1 Born-Oppenheimer Approximation 5 2.1.2 Hartree-Fock Approximation 6 2.1.3 The Hohenberg-Kohn Theorem 7 2.1.4 The Kohn-Sham Equation 8 2.1.5 Exchange-Correlation Energy Functional 11  Local Density Approximation (LDA) 11  Exchange Generalized Gradient Approximation (GGA) 12 2.2 Pseudopotential Method for DFT calculation 13 2.2.1 Bloch’s Theorem 13 2.2.2 Projector Augmented-Wave Method 14 2.3 Non-equilibrium Green’s Function method 16 2.3.1 DFT+NEGF Calculation 16  Projected Density of States 18 2.3.2 Spin-Transport Property Calculation 19  Transmission 19  Current 20  Spin-Transfer Torque 20 Chapter 3 Computational Details 22 3.1 Structural Geometry 22 3.2 Parameters for Structural and Electronic Properties 25 3.3 Parameters for Spin Transport Properties 29 Chapter 4 Results and Discussion 31 4.1 Electronic Properties of Fe/MgO/Fe MTJs 31 4.1.1 Fe bulk and MgO bulk 31 4.1.2 Fe/MgO/Fe MTJs 36 4.2 Spin Transport Properties of Fe/MgO/Fe MTJs 41 4.2.1 Transmission and Current 41 4.2.2 Spin Torque Effect 45 4.3 Spin-filter based MTJs 56 Chapter 5 Conclusion 60 References 62

    [1] M. N. Baibich, M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phy. Rev. Lett. 61, 2472 (1988).
    [2] E. Y. Tsymbal, I. Žutić (eds.) In: HANDBOOK OF SPIN TRANSPORT AND MAGNETISM., pt. II, chapt.4-5, p.69-114. (2012).
    [3] C. Chappert, A. Fert, and F. N. Van Dau, Nat Mater 6, 813 (2007).
    [4] M. Julliere, Phy. Lett. 54A, 225 (1975).
    [5] T. Miyazaki and N. Tezuka, Journal of Magnetism and Magnetic Materials 139, L231 (1995).
    [6] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phy. Rev. Lett. 74, 3273 (1995).
    [7] W. H. Butler, X.-G. Zhang, and T. C. Schulthess, Phys. Rev. B63, 054416 (2001).
    [8] J. Mathon and A. Umerski, Phys. Rev. B63, 220403 (2001).
    [9] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat Mater 3, 868 (2004).
    [10] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nat Mater 3, 862 (2004).
    [11] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).
    [12] J. Slonczewski, Phys. Rev. B3 9, 6995 (1989).
    [13] JunPy package, https://labstt.phy.ncu.edu.tw/junpy
    [14] Guo-Xing Miao, Martina Müller, and Jagadeesh S. Moodera et al., Phys. Rev. Lett. 102, 076601 (2009).
    [15] Y. -H. Tang, F. -C. Chu, and Nicholas Kioussis, Sci. Rep. 5, 11341 (2015).
    [16] R. M. Martin: Electronic Structure-Basic Theory and Practical Methods (2004)
    [17] M. Born and R. Oppenheimer, Annalen der Physik 389, 457 (1927).
    [18] D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society 24, 89 (1928).
    [19] V. Fock, Z. Phys. 61, 209 (1930).
    [20] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
    [21] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
    [22] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
    [23] N. W. Ashcroft and N.D. Mermin: Solid State Physics, Holt Saunders, Philadelphia, p.113 (1976).
    [24] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
    [25] nanoDCAL package,http://nanoacademic.ca/showArticle.jsp?id=17
    [26] J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
    [27] Y.-H. Tang, Nicholas Kioussis, Alan Kalitsov, W. H. Butler, and Roberto Car, Phys. Rev. B 81, 054437 (2010)
    [28] Y.-H. Tang, Z.-W. Huang, and B.-H. Huang, Phys. Rev. B 96, 064429 (2017)
    [29] Y.-H. Tang and B.-H. Huang, J. Phys. Chem. C 122, 20500-20505 (2018)
    [30] American Institute of Physics Handbook, edited by D. E. Gray, 3rd ed., McGraw-Hill, New York (1972).
    [31] B. Li et al., J. Geophys. Res. 111, B11206 (2006)
    [32] Nuttachai Jutong, Ivan Rungger, Cosima Schuster, Ulrich Eckern, Stefano Sanvito, and Udo Schwingenschlögl, Phys. Rev. B 86, 205310 (2012)
    [33] N. J. C. Ingle and I. S. Elfimov, Phys. Rev. B 77,121202(R) (2008)
    [34] VASP package, https://www.vasp.at/
    [35] V. I. Anisimov, I. V. Solovyev, and M. A. Korotin, Phys. Rev. B 48, 16929 (1993).
    [36] Ph. Mavropoulo s, N. Papanikolaou, P. H. Dederichs, Phys. Rev. Lett. 85, 1088 (2000).
    [37] Pavel V. Lukashev, Aleksander L. Wysocki, Julian P. Velev, Mark van Schilfgaarde, Sitaram S. Jaswal, Kirill D. Belashchenko, and Evgeny Y. Tsymbal, Phys. Rev. B 85, 224414 (2012).
    [38] Hitoshi Kubota, Akio Fukushima, Kay Yakushiji, Taro Nagahama, Shinji Yuasa, Koji Ando, Hiroki Maehara, Yoshinori Nagamine, Koji Tsunekawa, David D. Djayaprawira, Naoki Watanabe and Yoshishige Suzuki, Nature Phys. Vol.4, p37-41 (2007).
    [39] Jack C. Sankey, Yong-Tap Cui, Jonathan Z. Sun, John C. Slonczewski, Robert A. Buhrman and Daniel C. Ralph, Nature Phys. Vol. 4, p.67-71 (2007)
    [40] Christian Heiliger and M. D. Stiles, Phys. Rev. Lett. 100, 186805 (2008).
    [41] Xingtao Jia, Ke Xia, Youqi Ke, and Hong Guo, Phys. Rev. B 84, 014401 (2011).
    [42] Chen Wang, Yong-Tao Cui, Jordan A. Katine, Robert A. Buhrman and Daniel C. Ralph, Nature Phys. Vol.7, p496-501 (2011).
    [43] Ioannis Theodonis, Alan Kalitsov,and Nicholas Kioussis, Phys. Rev. B 76, 224406 (2007).
    [44] T. S. Santos, J. S. Moodera, K. V. Raman, E. Negusse, J. Holroyd, J. Dvorak, M. Liberati, Y. U. Idzerda, and E. Arenholz, Phys. Rev. Lett. 101, 147201 (2008).

    QR CODE
    :::