| 研究生: |
戴裕聰 Yu-Tsung Tai |
|---|---|
| 論文名稱: |
土壤吸力對路基土壤之力學特性影響探討 |
| 指導教授: |
李崇正
Chung-Jung Lee 黃偉慶 Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 土壤吸力 、濾紙法 、不飽和土壤 、回彈模數 |
| 外文關鍵詞: | unsaturated soil, resilient modulus, soil suction, filer paper method |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地處亞熱帶地區,頻繁的季節性變化可能是影響鋪面成效的關
鍵,但因國內缺乏長期鋪面成效觀測數據,故援用美國長期鋪面成效觀測
計劃LTPP (Long Term Pavement Performance) 資料庫軟體(DataPave 3.0)中
現地觀測資料,擷取現地數據,探討季節性環境變化如降雨、凍融、地下
水位昇降等對路基土壤行為特性的影響,結果發現路基土壤含水量會受到
季節性降雨影響而產生變動。以凝聚性土壤而言,變動多於最佳含水量
(Optimum Moisture Content, OMC)濕側,變動範圍小於3 %之內,此因乃土
壤自身組構能力與環境達到一平衡狀態,此稱平衡含水量(Equilibrium
moisture content, EMC)。回彈模數會因為降雨引致含水量的增加而折減,
變化趨勢及反應時間上與降雨歷時曲線較相似。
路基土壤地層位置因常位於地下水位面以上,而呈現不飽和狀態。土
壤在不飽和狀態時,土壤吸力是一項重要的參數,因土壤有效應力會受到
土壤吸力(Soil Suction)作用而改變,利用實驗室夯實試體,控制不同單位
重及含水量變化,進而模擬現地路基土壤自建造時OMC 狀態至鋪面開通
服務後,在現地環境所受之應力狀態及EMC 對回彈模數的影響,並利用
濾紙法(Filter Paper Method)量測不飽和土壤之吸力強度,結果發現土壤吸
力會隨含水量增加及相對夯實度的降低而折減。
實驗結果藉由建立回彈模數-土壤吸力模式能有效預測路基土壤回彈
模數受季節性變因之變動,取代繁鎖且昂貴的回彈模數試驗,幫助對現地
回彈模數的預測及監控,而影響路基土壤回彈模數的因子,依權重大小依
序為土壤單位重、土壤吸力、應力狀態,故建構時夯實度的控制,可能是
將來鋪面成效的一項重要因素。
Moisture content of pavement materials plays a significant role in the
performance of pavements. Variation in moisture content in the subgrade can
induce volume change of swelling soil and result in detrimental deformation to
the pavement structure. An increase in moisture content of the subgrade and
unbound subbase/base often results in decreases in the bearing capacity of
these materials, weakens the pavement’s response to loads, and reduces
pavement service life.
Soil suction will affect the mechanical properties of unsaturated soils
much, such as effective stress, resilient modulus, and strength. This study
attempted to collect information from LTPP database and study the climatic
model of subgrade soil under seasonal environmental variation. Resilient
modulus tests were conducted for 2 cohesive subgrade soils at a range of water
contents that is likely to occur in the field. Also, soil suction was determined by
filter paper method at various water contents to correlate with the resilient
modulus test results.
Experimental results indicate that: (1) field water content of cohesive soils
are found to remain in the wet side of OMC, while that of granular soils varies
in both the wet and dry side of OMC; (2) the resilient modulus of cohesive
soils reduces sharply with increasing water content and decreasing degree of
compaction; (3) the relative compaction of subgrade during construction is of
great importance and may affect the performance of pavements; (4) the matric
suction was found to be a good indicator of the stiffness of the subgrade and is
used to establish a model for predicting the resilient modulus of subgrade with
varying water contents; (5) the dry unit weight of soil also plays an important
role in the resilient modulus-matric suction model.
ASTM Standard, 2000, D5298-94: Standard Test Method for the Measurement
of Soil Potential (Suction) Using Filter Paper, Annual Book of ASTM
Standards, Vol. 04.09, Soil and Rock ( ): D4943 Ⅱ -latest, ASTM
International, West Conshohocken, PA, pp. 1113-1118.
AASHTO, (1992). Designation: T292-91; Standard Method of Test for
Resilient Modulus of Subgrade Soils and Untreated Base/Subbase
Materials, American Association of State Highway and Transportation
Officials.
Carmichael, R.F. III and Stuart. E. (1985). “Predicting resilient modulus: a
study to determine the mechanical properties of subgrade soils.”
Transportation Research Record 1043, pp. 145-148.
Elliott, R.P., and, Thornton, S.I. (1986). “Resilient modulus-what does it
mean?” Proceedings 37th Highway Geology Symposium, Helena, Montana,
pp. 283-301.
Elfino, M. K., and Davidson, J. L. (1989). “Modeling field moisture in resilient
moduli testing.” Geotechnical Special Publication 24 (D. J. Elton and R. P.
Ray, eds.), ASCE, pp. 31-51.
Guan, Y., Drumm, E. C., and Jackson, N. M. (1998). “Weighting factor for
seasonal subgrade resilient modulus.” Transportation Research Record
1619, pp. 94-101.
Guymon, L. G. (1994). Unsaturated Zone Hydrology, PTR PRENTICE HALL,
Englewood Cliffs, pp. 210-210.
Jin, M. S., Lee, K. W., and Kovacs, W. D. (1994). “Seasonal variation of
resilient modulus of subgrade.” Journal of Transportation Engineering,
Vol.120, No.4, pp.603-616.
Johnson, J. R., Berg, L. R., Chamberlain, J. E., and Cole, M. D. (1986) Frost
Action Predictive Techniques for Roads and Airfields, A Comprehensive
Survey of Research Findings. CREEL Report 86-18, US Army Corps of
Engineers. Cold Regions Research & Engineering Laboratory.
Heydinger, A. G. (2003). “Evaluation of seasonal effects on subgrade soils.”
Transportation Research Records, Vol. 1821, pp. 47-55.
Hillel, Daniel. (1980). Foundamentals Of Soil Physics. Academic Press, New
York.
http://www4.trb.org/trb/crp.nsf/All+Projects/NCHRP+9-23
Mohammad, L.N., Puppala, A.J., and Alavilli, P. (1995). “Influence of testing
procedure and LVDT location on resilient modulus of soils.”
Transportation Research Record, 1462, pp. 91-101.
Mrainho, A. F., and Stuermer, M. (2000). “The influence of the compaction
energy on the SWCC of a residual soil.” Advances in Unsaturated
Geotechnics, edited by Shackelford C., Houston, S., and Chang, Nien-Yin,
ASCE, No. 99, pp. 125-141.
Naji, K. N., Zaman, M. M., Nevels, J. B., and Mann, J. (2003). “Effect of soil
suction of resilient modulus of subgrade soil using the filter paper
technique.” TRB Annual Meeting CD-ROM, paper no. 00-1457.
Noureldin, S. (1994). “Influence of Stress Level and Seasonal Variations on In
Situ Pavement Layer Properties.” National Research Council ;
Transportation Research Record, 1448, pp. 16-24.
Quintus, H.V., and Killingsworth, B. (1998). “Analyses relating to pavement
material characterization and their effects on pavementperformance.”
FHWA, Publication No. FHWA-RD-97-085.
Rainwate, N. R., Yoder, E. R., Drumm, C. E., and Wilson., V. G. (1999).
“Comprehensive monitoring systems for measuring subgrade moisture
conditions.” Journal of Transportation Engineering, Vol. 123, No. 5,
ASCE pp. 439-448.
Salem, H. M., Bayomy F. M., and Al-Taher, M. G. (2003). “Prediction of
seasonal variation of subgrade resilient modulus using LTPP Data.” TRB
Annual Meeting CD-ROM, paper no. 03-3642.
Tadkamalla, G. B., and George, K. P. (1995). “Characterization of subgrade
soils at simulated field moisture.” Transportation Research Record 1481,
pp. 21-27.
Uzan, J. (1998). “Characterization of clayey subgrade materials for mechanistic
design of flexible pavements.” Transportation Research Record 1629, pp.
189-196.
Witczak, M. W., Houston, N. W., Zapata, C. E., Richter, C., Larson, G. and
Walsh, K. (2000). Improvement of the Integrated Climatic Model for
Moisture Content Predictions. Inter Team Technical Report (Seasonal 4),
NCHRP 1-37 A, Arizona State University.