跳到主要內容

簡易檢索 / 詳目顯示

研究生: 宋永舜
Yung-shun Sung
論文名稱: 導電布拉格反射鏡運用於高效率發光二極體之研究
Research of applying conductive Distributed Bragg Reflectors to high-efficiency Light-Emitting Diodes
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: 布拉格反射鏡透明導電膜高效率發光二極體
外文關鍵詞: transparent conductive oxide films, high-efficiency Light-Emitting Diodes, Distributed Bragg Reflectors
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究著重於反射鏡的光學設計,利用高折射率(TNO)與低折射率(AZO)透明導電膜材料堆疊形成具導電性的布拉格反射鏡。分別運用於藍光LED與紅光LED,並實際做成元件量測。
    透明導電膜的製備都在室溫下進行鍍製並且在真空環境下退火370度。在藍光LED部分,以P-GaN/ITO/(TNO/AZO)^4/TNO的設計最佳並實際鍍製反射率可達約81%,電阻率可達到1.453?10-3Ω-cm。模擬P-GaN/ITO/(TNO/AZO)^10/TNO時,反射率約可以達到94%。在紅光LED的部分,P-GaP/ITO/AZO/DBR/Ag的反射鏡設計可以比單純使用銀作為反射鏡反射率來的較高,實際做成元件並量測軸向光強可以發現有效的由478.3mcd提升至508.8mcd,在表面粗化後更是由812mcd提升至902mcd,有效提升軸向光強約11%。


    This study focused on optical design of reflectors and the films stacked by high refractive index material (TNO) and low refractive index (AZO) were deposited to make Distributed Bragg Reflectors. It was applied to blue LED, red LED and their device was made respectively for measurements.
    All transparent conductive oxide films were post-annealed at 370℃ in a vacuum. In blue LED part, the design of P-GaN/ITO/(TNO/AZO)^4/TNO was optimal, reflectivity of the coating reached approximately to 81%, and the conductive reflector showed a resistivity of 1.453?10-3Ω-cm. We used optic design of P-GaN/ITO/(TNO/AZO)^10/TNO to simulate coating with reflectivity approximately 94%. In red LED part, the reflectivity of P-GaP/ITO/AZO/DBR/Ag design is better than those using silver as the reflector. Actually we made device and measured the value of axial intensity, which increased from 478.3 mcd to 508.8 mcd. After surface roughening, the value of axial intensity increased from 812 mcd to 902 mcd. The design effectively enhanced axial intensity up to 11%.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 發光二極體發展歷史 1 1-2 氮化鎵系列材料 2 1-3 磷化物系列材料 5 1-4 研究動機 7 第二章 基礎理論 9 2-1 LED發光基本理論 9 2-1-1 基本原理 9 2-1-2 直接能隙與間接能隙半導體 10 2-2透明導電膜 11 2-2-1 簡介 11 2-2-2 基本理論 12 2-2-3 光學與電特性 14 2-2-4 磁控濺鍍法 19 2-3 歐姆接觸 20 2-4 反射鏡 21 第三章 實驗步驟與設備 23 3-1 導電膜實驗步驟與量測 23 3-1-1 實驗步驟 23 3-1-2 鍍膜設備與材料 24 3-1-3 四點探針 25 3-1-4 霍爾量測儀 26 3-1-5 光譜儀 28 3-2 特徵接觸電阻量測 28 3-2-1 TLM(Transmission Line Model) pattern 圖案製作 28 3-2-2 歐姆接觸電阻量測 29 第四章 實驗結果與討論 32 4-1 透明導電膜製備 32 4-1-1高折射率TNO導電膜 32 4-1-2低折射率ITO與AZO導電膜 35 4-2 藍光LED 39 4-2-1 反射鏡光學設計 39 4-2-2 歐姆接觸 41 4-2-3 導電布拉格反射鏡 44 4-3 紅光LED 47 4-3-1 反射鏡光學設計 47 4-3-2 歐姆接觸 55 4-3-3 元件應用 56 第五章 結論 59 參考文獻 61

    [1] H. J. Round, “ A note on carborundum, “ Electrical world, vol.49, no.6, pp.309, 1907.
    [2] G. B. Stringfellow, “ High brightness light emitting diode, “ Academic Press Inc.
    Boston, pp. 149, 1997.
    [3] H. Sugawara, M. Ishikawa, and G. Hatakoshi, High-efficiency InGaAlP/GaAs
    visible light-emitting diodes, Appl. Phys. Lett. 58, 1010 (1991).
    [4] H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, High-brightness InGaAlP
    green light-emitting diodes, Appl. Phys. Lett. 61, 1775 (1992).
    [5] Vanderwater, D. A. ; Tan, I.-H. ; Hofler, G.E. ; Defevere, D. C. ; Kish, F. A. ,
    High-brightness AlGaInP light emitting diodes; Proceedings of the IEEE Volume 85, Issue 11, NOV. 1997.
    [6] S. NaKamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687, 1994.
    [7] S. NaKamura, M. Senoh, and N. Iwasa, S. Hagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. Part 234, L1332, 1995.
    [8] T. Mukai, D. Morita, and S. Nakamura, J Cryst. Growth 189-190, 778, 1998.
    [9] T. Mukai, H. Narimatsu, and S. Nakamura, Jpn. J. Appl. Phys. Part 237, L479, 1998.
    [10] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “ Indium tin oxide contacts to gallium niu-tride optoelectronic device, “ Appl. Phys. Lett. , vol. 74, pp. 3930-3932, 1999.
    [11] F. A. Kish, F. M. Sterakna, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “ Very high-efficiency semiconductor wafer-bonded transparent-substrate (Al Ga) InP/GaP light-emitting diodes, “ Appl. Phys. Lett., vol. 64, pp.2839-2841, 1994.
    [12] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555-620 nm spectral region using a thick GaP window layer, “ Appl. Phys. Lett., vol. 61, pp. 1045-1047, 1992.
    [13] Yi-Jung Liu, Chih-Hung Yen, Kuo-Hui Yu, Pei-Ling Lin, Li-Yang Chen, Tsung-Han Tsai, Tsung-Yuan Tsai, and Wen-Chau Liu, “ Characteristics of an AlGaInP-Based Light Emitting Diode With an Indium-Tin-Oxide (ITO) Direct Ohmic Contact Structure.” IEEE Journal of Quantum Electronics, vol. 46, no.2, Feb. 2010.
    [14] K. Badeker, Annals of Physics, (Leipzig), 22 749 (1907).
    [15] J. T. Littleton, U. S. Patent, 2,118,795 (1938).
    [16] J. H. Lee and B. O. Park, “ Transparent conducting ZnO:Al, In and Sn thin films deposited by sol-gel method”, Thin Solid Films 426, 94 (2003).
    [17] M. Chen, Z. L. Pei, X. Wang, X. H. Liu, C. Sun and L. S. Wen, “ Intrinsic limit of electrical properties of transparent conductive oxide films” Journal of Physics D : Applied Physics 33, 2538-2548 (2000).
    [18] Yoon Tae Hwang, Hyun-Gi Hong, Tae-Yeon Seong, D.-S. Leem, T. Lee, K.-K. Kim, and J.-O. Song, “ Electrical and thermal stability of Ag ohmic contacts for GaN-based flip-chip light-emitting diodes by using an AgAl alloy capping layer” Materials Science in Semiconductor Processing 10 (2007) 14-18.
    [19] Se-Yeon Jung, Yoon-Han Kim, Young Shik Kong, and Tae-Yeon Seong, “ Improved electrical and thermal properties of Ag contacts for GaN-based flip-chip light-emitting diodes by using a NiZn alloy capping layer” Superlattices and Microstructures 46 (2009) 578-584.
    [20] C. H. Chou, C. L. Lin, Y. C. Chuang, H. Y. Bor, and C. Y. Liu, “ High thermally stable Ni/Ag(Al) alloy contacts on P-GaN” , Appl. Phys. Lett., 90 , 022103 (2007).
    [21] Michael H. MacDougal, P. Daniel Dapkus, Fellow, IEEE, Vasily Pudikov, Hanmin Zhao, and Gye Mo Yang, “ Ultralow Threshold Current Vertical-Cavity Surface-Emitting Lasers with AlAs Oxide-GaAs Distributed Bragg Reflectors”, IEEE Photonics Technology Letters, vol. 7, no. 3, March 1995.
    [22] H. M. Hg, T. D. Moustakas, and S. N. G. Chu, “ High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy”, Appl. Phys. Lett. 76, 2818 (2000).
    [23] Takao Ishida, Masahisa Okada, Tetsuo Tsuchiya, Takashi Murakami, and Miki Nakano, “ Structural and surface property study of sputter deposited transparent conductive Nb-doped titanium oxide.” Thin Solid Films 519 1934-1942 (2011).
    [24] W. F. Liu, G. T. Du, Y. F. Sun, J.M. Bian, Y. Cheng, “ Effects of hydrogen flux
    on the properties of Al-doped ZnO films sputtered in Ar + H2 ambient at low
    temperature”, Applied Surface Science, 253, 2999 (2007)
    [25] F. Ruske, T. V. Sittinger, W. Werner, B. Szyszka, K.-U. van Osten, K. Dietrich,
    “ Hydrogen doping of DC sputtered ZnO:Al films from novel target material”,
    Surface & Coating Technology, 200, 236 (2005).
    [26] J. S. Jang, S. J. Park, T. Y. Seong, J. The Electrochemical Soci, 146, 3425, 1999.
    [27] H. K. Cho, T. Hossian, J. W. Bae, I. Adeside, Solid-State Electronics 49, 774-778, 2005.
    [28]李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, 第六版,第262頁, (2009).

    QR CODE
    :::