跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陶宗沛
Tsung-pei Tao
論文名稱: 單電子電晶體在有限溫度下的模擬
Simulation of single-electron transistor at finite temperature
指導教授: 郭明庭
David M. -T. Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 42
中文關鍵詞: 單電子電晶體
外文關鍵詞: single electron transistor
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中利用安德生模型來描述一個單電子電晶體的結構,並且利用非平衡態的格林函數來模擬其理論特性。我們在此分為兩個討論的系統,分別為單一量子點多能階系統與多量子點單一能階系統。在單一量子點多能階系統中,我們主要觀察穿隧電流與偏壓之譜線關係,並且針對殼層填充、殼層穿隧與不同溫度的條件做模擬討論。在多量子點單一能階系統中,我們發現在特定條件下會有負微分電阻現象伴隨調控穿隧電流產生,而此負微分電阻現象會受到溫度的抑制,除此之外也會受到庫倫交互作用與穿隧率的影響。


    An Anderson model is employed to describe the structure of single electron transistors (SETs). The transport properties of SETs are calculated by the non equilibrium Green’s function method. In this dissertation, the spectroscopy of single quantum dot involving multiple energy levels and of multiple quantum dots involving a single energy level for each dot are studied. In a single quantum dot case, we focus on the behavior of tunneling current with respect to applied bias for the shell-filling and shell-tunneling cases at temperature variation. In the case of multiple quantum dots, we find that the multi-peak negative differential resistance (NDR) behavior can be yielded in the shell-filling case. Such an NDR effect is suppressed by the temperature, Coulomb interaction and tunneling rate.

    摘 要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 研究動機與簡介 1 1.1量子點簡介 1 1.2單電子電晶體發展與運用 2 1.3研究動機 3 第二章 穿隧電流 4 2.1 系統模型 4 2.2 模擬公式 6 2.2.1 電流方程式 6 2.2.2 單一能階系統格林函數 7 2.2.3 多能階系統格林函數 8 2.3 偏壓對量子點裸能階的修正 11 第三章 單一量子點多能階系統 12 3.1 對稱穿隧率 12 3.1.1 調控三能階系統偏壓 12 3.1.2 調控三能階閘極電位 17 3.2 非對稱穿隧率 20 3.2.1 殼層填充(Shell filling) 20 3.2.2 殼層穿隧(Shell tunneling) 25 3.3 有限溫度下的觀察 29 第四章 多量子點單一能階的調控 31 4.1 調控三量子點 32 4.2 不同條件對於負微分電阻元件的影響 37 4.2.1 inter-dot庫倫交互作用對負微分電阻元件之影響 37 4.2.2 穿隧率對負微分電阻元件之影響 39 4.2.3 溫度對負微分電阻元件之影響 39 第五章 總結 40 參考文獻: 41

    [1.1] D. V. Averin and K. K. Likharev, IBM J. Res. Develop. 32,144 (1998).
    [1.2] T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987)
    [1.3] C. S. Wu, C. D. Chen, S. M. Shih , and W. F. Su, Appl. Phys. Lett. 81, 4595 (2002).
    [1.4] A. Aassime, D. Gunnarsson, K. Bladh, P. Delsing, and R. Schoelkopf, Appl. Phys. Lett. 79, 4031 (2001).
    [1.5] O. Astafiev, S. Komiyama, T. Kutsuma, and V. Antonov, Y. Kawaguchi, and K. Hirakawa, Appl. Phys. Lett. 80, 4250 (2002).
    [1.6] M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).
    [2.1] David M.-T. Kuo, Physica E 27,355 (2005).
    [2.2] Y. Meir, N.S. Wingreen and P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993).
    [2.3] L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov.Phys. JETP 20,
    1018 (1965)]
    [2.4] David M. -T. Kuo and Y. C. Chang, Phys. Rev. B, 61, 11051 (2000).
    [2.5] David M. -T. Kuo and Y. C. Chang, Phys. Rev. Lett.,99,086803 (2007)
    [2.6] David M. -T. Kuo and Y. C. Chang, Phys. Rev. B, 77,245412 (2008)
    [4.1] A. C. Seabaugh, Y.-C. Kuo, and H.-T. Yuan, IEEE Electron Device Lett.
    13, 479 (1992).
    [4.2] T. Waho and M. Yamamoto, Proceedings of the 27th International
    Symposium on Multiple-Valued Logic 35, (1997).
    [4.3] L. Micheel, Proceedings of the 22nd International Symposium on
    Multiple-Valued Logic 18, (1992).
    [4.4] H. Inokawa, A. Fujiwara, Y. Takahashi, Appl. Phys. Lett. 79, 3618 (2001).
    [4.5] L.W. Yu, K.J. Chen, J. Song, J.M. Wang, J. Xu, W. Li, X.F. Huang, Thin
    Solid Film 515, 5466 (2007).
    [4.6] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, Appl. Phys. Lett.
    68, 1377 (1995).
    [4.7] David M.-T. Kuo and Yia-Chung Chang, Physica E 41,395 (2009).

    QR CODE
    :::